BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 29886048)

  • 1. Unidirectional regulation of the F
    Zarco-Zavala M; Mendoza-Hoffmann F; García-Trejo JJ
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):762-774. PubMed ID: 29886048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of rotation of the F
    Mendoza-Hoffmann F; Zarco-Zavala M; Ortega R; García-Trejo JJ
    J Bioenerg Biomembr; 2018 Oct; 50(5):403-424. PubMed ID: 30267331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Inhibitory Mechanism of the ζ Subunit of the F1FO-ATPase Nanomotor of Paracoccus denitrificans and Related α-Proteobacteria.
    García-Trejo JJ; Zarco-Zavala M; Mendoza-Hoffmann F; Hernández-Luna E; Ortega R; Mendoza-Hernández G
    J Biol Chem; 2016 Jan; 291(2):538-46. PubMed ID: 26546676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Biological Role of the ζ Subunit as Unidirectional Inhibitor of the F
    Mendoza-Hoffmann F; Pérez-Oseguera Á; Cevallos MÁ; Zarco-Zavala M; Ortega R; Peña-Segura C; Espinoza-Simón E; Uribe-Carvajal S; García-Trejo JJ
    Cell Rep; 2018 Jan; 22(4):1067-1078. PubMed ID: 29386127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ζ subunit of the F1FO-ATP synthase of α-proteobacteria controls rotation of the nanomotor with a different structure.
    Zarco-Zavala M; Morales-Ríos E; Mendoza-Hernández G; Ramírez-Silva L; Pérez-Hernández G; García-Trejo JJ
    FASEB J; 2014 May; 28(5):2146-57. PubMed ID: 24522203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory to non-inhibitory evolution of the
    Mendoza-Hoffmann F; Yang L; Buratto D; Brito-Sánchez J; Garduño-Javier G; Salinas-López E; Uribe-Álvarez C; Ortega R; Sotelo-Serrano O; Cevallos MÁ; Ramírez-Silva L; Uribe-Carvajal S; Pérez-Hernández G; Celis-Sandoval H; García-Trejo JJ
    Front Mol Biosci; 2023; 10():1184200. PubMed ID: 37664184
    [No Abstract]   [Full Text] [Related]  

  • 7. Evolution of the Inhibitory and Non-Inhibitory ε, ζ, and IF
    Mendoza-Hoffmann F; Zarco-Zavala M; Ortega R; Celis-Sandoval H; Torres-Larios A; García-Trejo JJ
    Microorganisms; 2022 Jul; 10(7):. PubMed ID: 35889091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deleting the IF
    Varghese F; Blaza JN; Jones AJY; Jarman OD; Hirst J
    Open Biol; 2018 Jan; 8(1):. PubMed ID: 29367351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel 11-kDa inhibitory subunit in the F1FO ATP synthase of Paracoccus denitrificans and related alpha-proteobacteria.
    Morales-Ríos E; de la Rosa-Morales F; Mendoza-Hernández G; Rodríguez-Zavala JS; Celis H; Zarco-Zavala M; García-Trejo JJ
    FASEB J; 2010 Feb; 24(2):599-608. PubMed ID: 19783785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of ATP hydrolysis by the ε subunit, ζ subunit and Mg-ADP in the ATP synthase of Paracoccus denitrificans.
    Jarman OD; Biner O; Hirst J
    Biochim Biophys Acta Bioenerg; 2021 Mar; 1862(3):148355. PubMed ID: 33321110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of bacterial ATP synthase activity: A gear-shifting or a pawl-ratchet mechanism?
    Miranda-Astudillo H; Zarco-Zavala M; García-Trejo JJ; González-Halphen D
    FEBS J; 2021 May; 288(10):3159-3163. PubMed ID: 33377595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 3 × 120° rotary mechanism of
    Zarco-Zavala M; Watanabe R; McMillan DGG; Suzuki T; Ueno H; Mendoza-Hoffmann F; García-Trejo JJ; Noji H
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29647-29657. PubMed ID: 33168750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of ATP synthase from Paracoccus denitrificans determined by X-ray crystallography at 4.0 Å resolution.
    Morales-Rios E; Montgomery MG; Leslie AG; Walker JE
    Proc Natl Acad Sci U S A; 2015 Oct; 112(43):13231-6. PubMed ID: 26460036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of a catalytic dimer of the α- and β-subunits of the F-ATPase from Paracoccus denitrificans at 2.3 Å resolution.
    Morales-Ríos E; Montgomery MG; Leslie AG; García-Trejo JJ; Walker JE
    Acta Crystallogr F Struct Biol Commun; 2015 Oct; 71(Pt 10):1309-17. PubMed ID: 26457523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR structures of α-proteobacterial ATPase-regulating ζ-subunits.
    Serrano P; Geralt M; Mohanty B; Wüthrich K
    J Mol Biol; 2014 Jul; 426(14):2547-53. PubMed ID: 24838125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanism on forcible ejection of ATPase inhibitory factor 1 from mitochondrial ATP synthase.
    Kobayashi R; Ueno H; Okazaki KI; Noji H
    Nat Commun; 2023 Mar; 14(1):1682. PubMed ID: 37002198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification, characterization and crystallization of the F-ATPase from Paracoccus denitrificans.
    Morales-Rios E; Watt IN; Zhang Q; Ding S; Fearnley IM; Montgomery MG; Wakelam MJ; Walker JE
    Open Biol; 2015 Sep; 5(9):150119. PubMed ID: 26423580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of ATP hydrolysis by thermoalkaliphilic F1Fo-ATP synthase is controlled by the C terminus of the epsilon subunit.
    Keis S; Stocker A; Dimroth P; Cook GM
    J Bacteriol; 2006 Jun; 188(11):3796-804. PubMed ID: 16707672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional heterogeneity of F
    Zharova TV; Vinogradov AD
    Biochim Biophys Acta Bioenerg; 2017 Nov; 1858(11):939-944. PubMed ID: 28803911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linking structural features from mitochondrial and bacterial F-type ATP synthases to their distinct mechanisms of ATPase inhibition.
    Krah A
    Prog Biophys Mol Biol; 2015 Oct; 119(1):94-102. PubMed ID: 26140992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.