These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 2988615)

  • 1. Calcium sequestration activity in rat liver microsomes. Evidence for a cooperation of calcium transport with glucose-6-phosphatase.
    Benedetti A; Fulceri R; Comporti M
    Biochim Biophys Acta; 1985 Jun; 816(2):267-77. PubMed ID: 2988615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Functional coupling of the calcium pump and glucose 6-phosphatase activity in liver microsomes: preliminary results].
    Benedetti A; Fulceri R; Comporti M
    Boll Soc Ital Biol Sper; 1984 Jul; 60(7):1317-23. PubMed ID: 6089854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy-dependent calcium sequestration activity in rat liver microsomes.
    Moore L; Chen T; Knapp HR; Landon EJ
    J Biol Chem; 1975 Jun; 250(12):4562-8. PubMed ID: 806589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MgATP-dependent glucose 6-phosphate-stimulated Ca2+ accumulation in liver microsomal fractions. Effects of inositol 1,4,5-trisphosphate and GTP.
    Benedetti A; Fulceri R; Romani A; Comporti M
    J Biol Chem; 1988 Mar; 263(7):3466-73. PubMed ID: 3257759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Astrocytic glucose-6-phosphatase and the permeability of brain microsomes to glucose 6-phosphate.
    Forsyth RJ; Bartlett K; Burchell A; Scott HM; Eyre JA
    Biochem J; 1993 Aug; 294 ( Pt 1)(Pt 1):145-51. PubMed ID: 8395816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulatory effect of glucose 6-phosphate on the non-mitochondrial Ca2+ uptake in permeabilized hepatocytes and Ca2+ release by inositol trisphosphate.
    Benedetti A; Fulceri R; Romani A; Comporti M
    Biochim Biophys Acta; 1987 May; 928(3):282-6. PubMed ID: 3032281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose-6-phosphate and Ca2+ sequestration are mutually enhanced in microsomes from liver, brain, and heart.
    Chen PY; Csutora P; Veyna-Burke NA; Marchase RB
    Diabetes; 1998 Jun; 47(6):874-81. PubMed ID: 9604862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liver glucose-6-phosphatase activity is not modulated by physiological intracellular Ca2+ concentrations.
    Fulceri R; Bellomo G; Gamberucci A; Benedetti A
    Biochem J; 1991 May; 275 ( Pt 3)(Pt 3):805-7. PubMed ID: 1645522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose 6-phosphate stimulation of MgATP-dependent Ca2+ uptake by rat kidney microsomes.
    Fulceri R; Romani A; Pompella A; Benedetti A
    Biochim Biophys Acta; 1990 Feb; 1022(1):129-33. PubMed ID: 2302399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic properties of the Ca2+-accumulation system of a rat liver microsomal fraction.
    Dawson AP
    Biochem J; 1982 Jul; 206(1):73-9. PubMed ID: 6812572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative aspects of relationship between glucose 6-phosphate transport and hydrolysis for liver microsomal glucose-6-phosphatase system. Selective thermal inactivation of catalytic component in situ at acid pH.
    Arion WJ; Lange AJ; Ballas LM
    J Biol Chem; 1976 Nov; 251(21):6784-90. PubMed ID: 10305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pentamidine activates T1 the hepatic microsomal glucose 6-phosphate transport protein of the glucose-6-phosphatase system.
    Scott HM; Burchell A
    Biochim Biophys Acta; 1991 Jul; 1097(1):31-6. PubMed ID: 1650253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MgATP-dependent, glucose 6-phosphate-stimulated liver microsomal Ca2+ accumulation: difference between rough and smooth microsomes.
    Romani A; Fulceri R; Pompella A; Benedetti A
    Arch Biochem Biophys; 1988 Oct; 266(1):1-9. PubMed ID: 2972255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of calcium uptake by liver microsomes: effect of anions and ionophores.
    Chan KM; Koepnick SL
    Biochim Biophys Acta; 1985 Sep; 818(3):291-8. PubMed ID: 2994726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective inhibition of oxalate-stimulated Ca2+ transport by cyclopiazonic acid and thapsigargin in smooth muscle microsomes.
    Darby PJ; Kwan CY; Daniel EE
    Can J Physiol Pharmacol; 1996 Feb; 74(2):182-92. PubMed ID: 8723031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-dependent calcium accumulation in brain microsomes. Enhancement by phosphate and oxalate.
    Trotta EE; de Meis L
    Biochim Biophys Acta; 1975 Jun; 394(2):239-47. PubMed ID: 124599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GTP and ATP increase the transport capacity of the T1 transport protein of the microsomal glucose-6-phosphatase complex.
    Grant A; Burchell A
    Biochem Soc Trans; 1990 Dec; 18(6):1251-2. PubMed ID: 1965172
    [No Abstract]   [Full Text] [Related]  

  • 18. On the mechanisms of the inhibition of calcium sequestering activity of liver microsomes in bromotrichloromethane intoxication.
    Fulceri R; Benedetti A; Comporti M
    Res Commun Chem Pathol Pharmacol; 1984 Nov; 46(2):235-43. PubMed ID: 6240096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of human hepatic microsomal glucose-6-phosphatase in clinical conditions where the T2 pyrophosphate/phosphate transport protein is absent.
    Nordlie RC; Scott HM; Waddell ID; Hume R; Burchell A
    Biochem J; 1992 Feb; 281 ( Pt 3)(Pt 3):859-63. PubMed ID: 1311177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MgATP-dependent accumulation of calcium ions and inorganic phosphate in a liver reticular pool.
    Fulceri R; Bellomo G; Gamberucci A; Benedetti A
    Biochem J; 1990 Dec; 272(2):549-52. PubMed ID: 2268284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.