These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 29886161)

  • 1. Gaining sight after being blind: A tribute to Jing Zhu.
    De Hosson JTM
    Ultramicroscopy; 2018 Sep; 192():37-49. PubMed ID: 29886161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in transmission electron microscopy: in situ straining and in situ compression experiments on metallic glasses.
    De Hosson JT
    Microsc Res Tech; 2009 Mar; 72(3):250-60. PubMed ID: 19189312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions.
    Chen TH; Tsai CK
    Materials (Basel); 2015 Apr; 8(4):1831-1840. PubMed ID: 28788034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation mechanisms in free-standing nanoscale thin films: a quantitative in situ transmission electron microscope study.
    Haque MA; Saif MT
    Proc Natl Acad Sci U S A; 2004 Apr; 101(17):6335-40. PubMed ID: 15084745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approaching the ideal elastic limit of metallic glasses.
    Tian L; Cheng YQ; Shan ZW; Li J; Wang CC; Han XD; Sun J; Ma E
    Nat Commun; 2012 Jan; 3():609. PubMed ID: 22215084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic Deformation in Metallic Glasses.
    Sha ZD; Qu SX; Liu ZS; Wang TJ; Gao H
    Nano Lett; 2015 Oct; 15(10):7010-5. PubMed ID: 26422317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of Lomer-Cottrell locks during strain hardening in nanocrystalline nickel by in situ TEM.
    Lee JH; Holland TB; Mukherjee AK; Zhang X; Wang H
    Sci Rep; 2013; 3():1061. PubMed ID: 23320142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing anelasticity and structural rearrangements in nanoscale metallic glass films using
    Sarkar R; Ebner C; Izadi E; Rentenberger C; Rajagopalan J
    Mater Res Lett; 2017 May; 5(3):135-143. PubMed ID: 28382229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time, high-resolution study of nanocrystallization and fatigue cracking in a cyclically strained metallic glass.
    Wang CC; Mao YW; Shan ZW; Dao M; Li J; Sun J; Ma E; Suresh S
    Proc Natl Acad Sci U S A; 2013 Dec; 110(49):19725-30. PubMed ID: 24255113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale size effects in crystallization of metallic glass nanorods.
    Sohn S; Jung Y; Xie Y; Osuji C; Schroers J; Cha JJ
    Nat Commun; 2015 Sep; 6():8157. PubMed ID: 26323828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Key factors affecting mechanical behavior of metallic glass nanowires.
    Zhang Q; Li QK; Li M
    Sci Rep; 2017 Jan; 7():41365. PubMed ID: 28134292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals.
    Shan ZW; Mishra RK; Syed Asif SA; Warren OL; Minor AM
    Nat Mater; 2008 Feb; 7(2):115-9. PubMed ID: 18157134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxation and Strain-Hardening Relationships in Highly Rejuvenated Metallic Glasses.
    Yuan X; Şopu D; Song K; Eckert J
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM.
    Lee S; Im J; Yoo Y; Bitzek E; Kiener D; Richter G; Kim B; Oh SH
    Nat Commun; 2014; 5():3033. PubMed ID: 24398783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallization during bending of a Pd-based metallic glass detected by x-ray microscopy.
    Yavari AR; Georgarakis K; Antonowicz J; Stoica M; Nishiyama N; Vaughan G; Chen M; Pons M
    Phys Rev Lett; 2012 Aug; 109(8):085501. PubMed ID: 23002757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Study on the Fatigue Limit of Metallic Glasses under Cyclic Tension-Compression Loading.
    Yan J; Meng W; Chen Z; Guo H; Yan X
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32276314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraordinary plasticity of ductile bulk metallic glasses.
    Chen M; Inoue A; Zhang W; Sakurai T
    Phys Rev Lett; 2006 Jun; 96(24):245502. PubMed ID: 16907252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strengthening Mechanism of a Single Precipitate in a Metallic Nanocube.
    Kiani MT; Wang Y; Bertin N; Cai W; Gu XW
    Nano Lett; 2019 Jan; 19(1):255-260. PubMed ID: 30525680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Densification and strain hardening of a metallic glass under tension at room temperature.
    Wang ZT; Pan J; Li Y; Schuh CA
    Phys Rev Lett; 2013 Sep; 111(13):135504. PubMed ID: 24116793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exceptional fracture resistance of ultrathin metallic glass films due to an intrinsic size effect.
    Glushko O; Mühlbacher M; Gammer C; Cordill MJ; Mitterer C; Eckert J
    Sci Rep; 2019 Jun; 9(1):8281. PubMed ID: 31164663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.