These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 29886404)
1. A uniform bacterial growth potential assay for different water types. Farhat N; Hammes F; Prest E; Vrouwenvelder J Water Res; 2018 Oct; 142():227-235. PubMed ID: 29886404 [TBL] [Abstract][Full Text] [Related]
2. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method. Prest EI; Hammes F; Kötzsch S; van Loosdrecht MC; Vrouwenvelder JS Water Res; 2013 Dec; 47(19):7131-42. PubMed ID: 24183559 [TBL] [Abstract][Full Text] [Related]
3. Development of an ATP luminescence-based method for assimilable organic carbon determination in reclaimed water. Li GQ; Yu T; Wu QY; Lu Y; Hu HY Water Res; 2017 Oct; 123():345-352. PubMed ID: 28683375 [TBL] [Abstract][Full Text] [Related]
4. Growth of Vibrio cholerae O1 Ogawa Eltor in freshwater. Vital M; Füchslin HP; Hammes F; Egli T Microbiology (Reading); 2007 Jul; 153(Pt 7):1993-2001. PubMed ID: 17600045 [TBL] [Abstract][Full Text] [Related]
5. Application of flow cytometry to monitor assimilable organic carbon (AOC) and microbial community changes in water. Elhadidy AM; Van Dyke MI; Peldszus S; Huck PM J Microbiol Methods; 2016 Nov; 130():154-163. PubMed ID: 27638413 [TBL] [Abstract][Full Text] [Related]
6. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks. Lautenschlager K; Hwang C; Liu WT; Boon N; Köster O; Vrouwenvelder H; Egli T; Hammes F Water Res; 2013 Jun; 47(9):3015-25. PubMed ID: 23557697 [TBL] [Abstract][Full Text] [Related]
7. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System. Prest EI; Weissbrodt DG; Hammes F; van Loosdrecht MC; Vrouwenvelder JS PLoS One; 2016; 11(10):e0164445. PubMed ID: 27792739 [TBL] [Abstract][Full Text] [Related]
8. Improved biostability assessment of drinking water with a suite of test methods at a water supply treating eutrophic lake water. van der Kooij D; Martijn B; Schaap PG; Hoogenboezem W; Veenendaal HR; van der Wielen PW Water Res; 2015 Dec; 87():347-55. PubMed ID: 26451977 [TBL] [Abstract][Full Text] [Related]
9. Effect of disinfectant residual on the interaction between bacterial growth and assimilable organic carbon in a drinking water distribution system. Li W; Zhang J; Wang F; Qian L; Zhou Y; Qi W; Chen J Chemosphere; 2018 Jul; 202():586-597. PubMed ID: 29597176 [TBL] [Abstract][Full Text] [Related]
10. Identifying the underlying causes of biological instability in a full-scale drinking water supply system. Nescerecka A; Juhna T; Hammes F Water Res; 2018 May; 135():11-21. PubMed ID: 29448079 [TBL] [Abstract][Full Text] [Related]
11. Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water. Liu X; Wang J; Liu T; Kong W; He X; Jin Y; Zhang B PLoS One; 2015; 10(6):e0128825. PubMed ID: 26034988 [TBL] [Abstract][Full Text] [Related]
12. Application of enhanced assimilable organic carbon method across operational drinking water systems. Pick FC; Fish KE; Biggs CA; Moses JP; Moore G; Boxall JB PLoS One; 2019; 14(12):e0225477. PubMed ID: 31809502 [TBL] [Abstract][Full Text] [Related]
13. Assimilable organic carbon (AOC) in soil water extracts using Vibrio harveyi BB721 and its implication for microbial biomass. Ma J; Ibekwe AM; Wang H; Xu J; Leddy M; Yang CH; Crowley DE PLoS One; 2012; 7(4):e28519. PubMed ID: 22679477 [TBL] [Abstract][Full Text] [Related]
14. Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant. Lautenschlager K; Hwang C; Ling F; Liu WT; Boon N; Köster O; Egli T; Hammes F Water Res; 2014 Oct; 62():40-52. PubMed ID: 24937356 [TBL] [Abstract][Full Text] [Related]
15. A rapid technique for assessing assimilable organic carbon of UV/H2O2-treated water. Bazri MM; Mohseni M J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(9):1086-93. PubMed ID: 23573929 [TBL] [Abstract][Full Text] [Related]
16. Measurement and interpretation of microbial adenosine tri-phosphate (ATP) in aquatic environments. Hammes F; Goldschmidt F; Vital M; Wang Y; Egli T Water Res; 2010 Jul; 44(13):3915-23. PubMed ID: 20605621 [TBL] [Abstract][Full Text] [Related]
17. Regrowth potential of chlorine-resistant bacteria in drinking water under chloramination. Wu X; Nan J; Shen J; Kang J; Li D; Yan P; Wang W; Wang B; Zhao S; Chen Z J Hazard Mater; 2022 Apr; 428():128264. PubMed ID: 35051770 [TBL] [Abstract][Full Text] [Related]
18. Assessment of the microbial growth potential of slow sand filtrate with the biomass production potential test in comparison with the assimilable organic carbon method. van der Kooij D; Veenendaal HR; van der Mark EJ; Dignum M Water Res; 2017 Nov; 125():270-279. PubMed ID: 28865376 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water. Vang ÓK; Corfitzen CB; Smith C; Albrechtsen HJ Water Res; 2014 Nov; 64():309-320. PubMed ID: 25086698 [TBL] [Abstract][Full Text] [Related]
20. Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Hammes F; Berney M; Wang Y; Vital M; Köster O; Egli T Water Res; 2008 Jan; 42(1-2):269-77. PubMed ID: 17659762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]