These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 29886406)
1. A modular inverse elastostatics approach to resolve the pressure-induced stress state for in vivo imaging based cardiovascular modeling. Peirlinck M; De Beule M; Segers P; Rebelo N J Mech Behav Biomed Mater; 2018 Sep; 85():124-133. PubMed ID: 29886406 [TBL] [Abstract][Full Text] [Related]
2. A pull-back algorithm to determine the unloaded vascular geometry in anisotropic hyperelastic AAA passive mechanics. Riveros F; Chandra S; Finol EA; Gasser TC; Rodriguez JF Ann Biomed Eng; 2013 Apr; 41(4):694-708. PubMed ID: 23192266 [TBL] [Abstract][Full Text] [Related]
3. A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress. Joldes GR; Miller K; Wittek A; Doyle B J Mech Behav Biomed Mater; 2016 May; 58():139-148. PubMed ID: 26282385 [TBL] [Abstract][Full Text] [Related]
4. Non-invasive determination of zero-pressure geometry of arterial aneurysms. Raghavan ML; Ma B; Fillinger MF Ann Biomed Eng; 2006 Sep; 34(9):1414-9. PubMed ID: 16838128 [TBL] [Abstract][Full Text] [Related]
5. Ascending thoracic aortic aneurysm wall stress analysis using patient-specific finite element modeling of in vivo magnetic resonance imaging. Krishnan K; Ge L; Haraldsson H; Hope MD; Saloner DA; Guccione JM; Tseng EE Interact Cardiovasc Thorac Surg; 2015 Oct; 21(4):471-80. PubMed ID: 26180089 [TBL] [Abstract][Full Text] [Related]
6. The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm. Reeps C; Gee M; Maier A; Gurdan M; Eckstein HH; Wall WA J Vasc Surg; 2010 Mar; 51(3):679-88. PubMed ID: 20206812 [TBL] [Abstract][Full Text] [Related]
7. Use of regional mechanical properties of abdominal aortic aneurysms to advance finite element modeling of rupture risk. Tierney ÁP; Callanan A; McGloughlin TM J Endovasc Ther; 2012 Feb; 19(1):100-14. PubMed ID: 22313210 [TBL] [Abstract][Full Text] [Related]
8. Patient-specific finite element analysis of ascending thoracic aortic aneurysm. Wisneski AD; Mookhoek A; Chitsaz S; Hope MD; Guccione JM; Ge L; Tseng EE J Heart Valve Dis; 2014 Nov; 23(6):765-72. PubMed ID: 25790625 [TBL] [Abstract][Full Text] [Related]
9. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. Scotti CM; Shkolnik AD; Muluk SC; Finol EA Biomed Eng Online; 2005 Nov; 4():64. PubMed ID: 16271141 [TBL] [Abstract][Full Text] [Related]
10. The influence of fiber dispersion on the mechanical response of aortic tissues in health and disease: a computational study. Niestrawska JA; Ch Haspinger D; Holzapfel GA Comput Methods Biomech Biomed Engin; 2018 Feb; 21(2):99-112. PubMed ID: 29436874 [TBL] [Abstract][Full Text] [Related]
11. A monolithic 3D-0D coupled closed-loop model of the heart and the vascular system: Experiment-based parameter estimation for patient-specific cardiac mechanics. Hirschvogel M; Bassilious M; Jagschies L; Wildhirt SM; Gee MW Int J Numer Method Biomed Eng; 2017 Aug; 33(8):e2842. PubMed ID: 27743468 [TBL] [Abstract][Full Text] [Related]
12. Gender, smoking, body size, and aneurysm geometry influence the biomechanical rupture risk of abdominal aortic aneurysms as estimated by finite element analysis. Lindquist Liljeqvist M; Hultgren R; Siika A; Gasser TC; Roy J J Vasc Surg; 2017 Apr; 65(4):1014-1021.e4. PubMed ID: 28342508 [TBL] [Abstract][Full Text] [Related]
13. Inverse elastostatic stress analysis in pre-deformed biological structures: Demonstration using abdominal aortic aneurysms. Lu J; Zhou X; Raghavan ML J Biomech; 2007; 40(3):693-6. PubMed ID: 16542663 [TBL] [Abstract][Full Text] [Related]
14. Importance of initial stress for abdominal aortic aneurysm wall motion: dynamic MRI validated finite element analysis. Merkx MA; van 't Veer M; Speelman L; Breeuwer M; Buth J; van de Vosse FN J Biomech; 2009 Oct; 42(14):2369-73. PubMed ID: 19665127 [TBL] [Abstract][Full Text] [Related]
15. Coupled fluid-structure interaction hemodynamics in a zero-pressure state corrected arterial geometry. Vavourakis V; Papaharilaou Y; Ekaterinaris JA J Biomech; 2011 Sep; 44(13):2453-60. PubMed ID: 21762918 [TBL] [Abstract][Full Text] [Related]
17. A new inverse method for estimation of in vivo mechanical properties of the aortic wall. Liu M; Liang L; Sun W J Mech Behav Biomed Mater; 2017 Aug; 72():148-158. PubMed ID: 28494272 [TBL] [Abstract][Full Text] [Related]
18. Rupture risk in abdominal aortic aneurysms: A realistic assessment of the explicit GPU approach. Strbac V; Pierce DM; Rodriguez-Vila B; Vander Sloten J; Famaey N J Biomech; 2017 May; 56():1-9. PubMed ID: 28318603 [TBL] [Abstract][Full Text] [Related]
19. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries. Pierce DM; Fastl TE; Rodriguez-Vila B; Verbrugghe P; Fourneau I; Maleux G; Herijgers P; Gomez EJ; Holzapfel GA J Mech Behav Biomed Mater; 2015 Jul; 47():147-164. PubMed ID: 25931035 [TBL] [Abstract][Full Text] [Related]