BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 29887230)

  • 1. Comparison of variable selection methods for clinical predictive modeling.
    Sanchez-Pinto LN; Venable LR; Fahrenbach J; Churpek MM
    Int J Med Inform; 2018 Aug; 116():10-17. PubMed ID: 29887230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multicenter random forest model for effective prognosis prediction in collaborative clinical research network.
    Li J; Tian Y; Zhu Y; Zhou T; Li J; Ding K; Li J
    Artif Intell Med; 2020 Mar; 103():101814. PubMed ID: 32143809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of 30-Day All-Cause Readmissions in Patients Hospitalized for Heart Failure: Comparison of Machine Learning and Other Statistical Approaches.
    Frizzell JD; Liang L; Schulte PJ; Yancy CW; Heidenreich PA; Hernandez AF; Bhatt DL; Fonarow GC; Laskey WK
    JAMA Cardiol; 2017 Feb; 2(2):204-209. PubMed ID: 27784047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of forest methods for time-to-event data: variable selection and predictive performance.
    Liu Y; Zhou S; Wei H; An S
    BMC Med Res Methodol; 2021 Sep; 21(1):193. PubMed ID: 34563138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A random forest method with feature selection for developing medical prediction models with clustered and longitudinal data.
    Speiser JL
    J Biomed Inform; 2021 May; 117():103763. PubMed ID: 33781921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of variable selection methods for random forests and omics data sets.
    Degenhardt F; Seifert S; Szymczak S
    Brief Bioinform; 2019 Mar; 20(2):492-503. PubMed ID: 29045534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comparison of Random Forest Variable Selection Methods for Classification Prediction Modeling.
    Speiser JL; Miller ME; Tooze J; Ip E
    Expert Syst Appl; 2019 Nov; 134():93-101. PubMed ID: 32968335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recursive Random Forests Enable Better Predictive Performance and Model Interpretation than Variable Selection by LASSO.
    Zhu XW; Xin YJ; Ge HL
    J Chem Inf Model; 2015 Apr; 55(4):736-46. PubMed ID: 25746224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretability and Class Imbalance in Prediction Models for Pain Volatility in Manage My Pain App Users: Analysis Using Feature Selection and Majority Voting Methods.
    Rahman QA; Janmohamed T; Clarke H; Ritvo P; Heffernan J; Katz J
    JMIR Med Inform; 2019 Nov; 7(4):e15601. PubMed ID: 31746764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable feature selection for clinical prediction: exploiting ICD tree structure using Tree-Lasso.
    Kamkar I; Gupta SK; Phung D; Venkatesh S
    J Biomed Inform; 2015 Feb; 53():277-90. PubMed ID: 25500636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An extensive experimental survey of regression methods.
    Fernández-Delgado M; Sirsat MS; Cernadas E; Alawadi S; Barro S; Febrero-Bande M
    Neural Netw; 2019 Mar; 111():11-34. PubMed ID: 30654138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the accuracy and stability of variable selection methods for random forest modeling in ecology.
    Fox EW; Hill RA; Leibowitz SG; Olsen AR; Thornbrugh DJ; Weber MH
    Environ Monit Assess; 2017 Jul; 189(7):316. PubMed ID: 28589457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical-learning strategies generate only modestly performing predictive models for urinary symptoms following external beam radiotherapy of the prostate: A comparison of conventional and machine-learning methods.
    Yahya N; Ebert MA; Bulsara M; House MJ; Kennedy A; Joseph DJ; Denham JW
    Med Phys; 2016 May; 43(5):2040. PubMed ID: 27147316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning analysis of motor evoked potential time series to predict disability progression in multiple sclerosis.
    Yperman J; Becker T; Valkenborg D; Popescu V; Hellings N; Wijmeersch BV; Peeters LM
    BMC Neurol; 2020 Mar; 20(1):105. PubMed ID: 32199461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Examining variable selection methods for the predictive performance of regression models and the proportion of selected variables and selected random variables.
    Kaneko H
    Heliyon; 2021 Jun; 7(6):e07356. PubMed ID: 34195450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of three machine learning models for self-referral decision support on low back pain in primary care.
    Oude Nijeweme-d'Hollosy W; van Velsen L; Poel M; Groothuis-Oudshoorn CGM; Soer R; Hermens H
    Int J Med Inform; 2018 Feb; 110():31-41. PubMed ID: 29331253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variable selection with missing data in both covariates and outcomes: Imputation and machine learning.
    Hu L; Joyce Lin JY; Ji J
    Stat Methods Med Res; 2021 Dec; 30(12):2651-2671. PubMed ID: 34696650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Teaching a Machine to Feel Postoperative Pain: Combining High-Dimensional Clinical Data with Machine Learning Algorithms to Forecast Acute Postoperative Pain.
    Tighe PJ; Harle CA; Hurley RW; Aytug H; Boezaart AP; Fillingim RB
    Pain Med; 2015 Jul; 16(7):1386-401. PubMed ID: 26031220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features.
    Cui Z; Gong G
    Neuroimage; 2018 Sep; 178():622-637. PubMed ID: 29870817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined Performance of Screening and Variable Selection Methods in Ultra-High Dimensional Data in Predicting Time-To-Event Outcomes.
    Pi L; Halabi S
    Diagn Progn Res; 2018; 2():. PubMed ID: 30393771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.