These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 29887354)

  • 21. New tacrine-derived AChE/BuChE inhibitors: Synthesis and biological evaluation of 5-amino-2-phenyl-4H-pyrano[2,3-b]quinoline-3-carboxylates.
    Eghtedari M; Sarrafi Y; Nadri H; Mahdavi M; Moradi A; Homayouni Moghadam F; Emami S; Firoozpour L; Asadipour A; Sabzevari O; Foroumadi A
    Eur J Med Chem; 2017 Mar; 128():237-246. PubMed ID: 28189905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative Cholinesterase, α-Glucosidase Inhibitory, Antioxidant, Molecular Docking, and Kinetic Studies on Potent Succinimide Derivatives.
    Ahmad A; Ullah F; Sadiq A; Ayaz M; Saeed Jan M; Shahid M; Wadood A; Mahmood F; Rashid U; Ullah R; Sahibzada MUK; Alqahtani AS; Mahmood HM
    Drug Des Devel Ther; 2020; 14():2165-2178. PubMed ID: 32606589
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Syntheses, cholinesterases inhibition, and molecular docking studies of pyrido[2,3-b]pyrazine derivatives.
    Hameed A; Zehra ST; Shah SJ; Khan KM; Alharthy RD; Furtmann N; Bajorath J; Tahir MN; Iqbal J
    Chem Biol Drug Des; 2015 Nov; 86(5):1115-20. PubMed ID: 25951978
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring Structure-Activity Relationship in Tacrine-Squaramide Derivatives as Potent Cholinesterase Inhibitors.
    Svobodova B; Mezeiova E; Hepnarova V; Hrabinova M; Muckova L; Kobrlova T; Jun D; Soukup O; Jimeno ML; Marco-Contelles J; Korabecny J
    Biomolecules; 2019 Aug; 9(8):. PubMed ID: 31430943
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel tacrine derivatives exhibiting improved acetylcholinesterase inhibition: Design, synthesis and biological evaluation.
    Reddy EK; Remya C; Mantosh K; Sajith AM; Omkumar RV; Sadasivan C; Anwar S
    Eur J Med Chem; 2017 Oct; 139():367-377. PubMed ID: 28810188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chlorinated tacrine analogs: Design, synthesis and biological evaluation of their anti-cholinesterase activity as potential treatment for Alzheimer's disease.
    Ragab HM; Teleb M; Haidar HR; Gouda N
    Bioorg Chem; 2019 May; 86():557-568. PubMed ID: 30782574
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design, synthesis, cholinesterase inhibition and molecular modelling study of novel tacrine hybrids with carbohydrate derivatives.
    Lopes JPB; Silva L; da Costa Franarin G; Antonio Ceschi M; Seibert Lüdtke D; Ferreira Dantas R; de Salles CMC; Paes Silva-Jr F; Roberto Senger M; Alvim Guedes I; Emmanuel Dardenne L
    Bioorg Med Chem; 2018 Nov; 26(20):5566-5577. PubMed ID: 30340901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thieno[2,3-b]pyridine amines: Synthesis and evaluation of tacrine analogs against biological activities related to Alzheimer's disease.
    Saeedi M; Safavi M; Allahabadi E; Rastegari A; Hariri R; Jafari S; Bukhari SNA; Mirfazli SS; Firuzi O; Edraki N; Mahdavi M; Akbarzadeh T
    Arch Pharm (Weinheim); 2020 Oct; 353(10):e2000101. PubMed ID: 32657467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cholinesterases inhibition and molecular modeling studies of piperidyl-thienyl and 2-pyrazoline derivatives of chalcones.
    Shah MS; Khan SU; Ejaz SA; Afridi S; Rizvi SUF; Najam-Ul-Haq M; Iqbal J
    Biochem Biophys Res Commun; 2017 Jan; 482(4):615-624. PubMed ID: 27865835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and evaluation of heterobivalent tacrine derivatives as potential multi-functional anti-Alzheimer agents.
    Luo W; Li YP; He Y; Huang SL; Li D; Gu LQ; Huang ZS
    Eur J Med Chem; 2011 Jun; 46(6):2609-16. PubMed ID: 21497959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of two different cholinesterases by tacrine.
    Ahmed M; Rocha JB; Corrêa M; Mazzanti CM; Zanin RF; Morsch AL; Morsch VM; Schetinger MR
    Chem Biol Interact; 2006 Aug; 162(2):165-71. PubMed ID: 16860785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis, biological evaluation and molecular modeling study of novel tacrine-carbazole hybrids as potential multifunctional agents for the treatment of Alzheimer's disease.
    Thiratmatrakul S; Yenjai C; Waiwut P; Vajragupta O; Reubroycharoen P; Tohda M; Boonyarat C
    Eur J Med Chem; 2014 Mar; 75():21-30. PubMed ID: 24508831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An expedient, ionic liquid mediated multi-component synthesis of novel piperidone grafted cholinesterase enzymes inhibitors and their molecular modeling study.
    Basiri A; Murugaiyah V; Osman H; Kumar RS; Kia Y; Awang KB; Ali MA
    Eur J Med Chem; 2013 Sep; 67():221-9. PubMed ID: 23871902
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design, facile synthesis, and evaluation of novel spiro- and pyrazolo[1,5-c]quinazolines as cholinesterase inhibitors: Molecular docking and MM/GBSA studies.
    Gálvez J; Polo S; Insuasty B; Gutiérrez M; Cáceres D; Alzate-Morales JH; De-la-Torre P; Quiroga J
    Comput Biol Chem; 2018 Jun; 74():218-229. PubMed ID: 29655025
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel tacrine analogs as potential cholinesterase inhibitors in Alzheimer's disease.
    El-Malah A; Gedawy EM; Kassab AE; Salam RM
    Arch Pharm (Weinheim); 2014 Feb; 347(2):96-103. PubMed ID: 24343873
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of tacrine-lophine hybrids via one-pot four component reaction and biological evaluation as acetyl- and butyrylcholinesterase inhibitors.
    da Costa JS; Lopes JP; Russowsky D; Petzhold CL; Borges AC; Ceschi MA; Konrath E; Batassini C; Lunardi PS; Gonçalves CA
    Eur J Med Chem; 2013 Apr; 62():556-63. PubMed ID: 23422935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 7-MEOTA-donepezil like compounds as cholinesterase inhibitors: Synthesis, pharmacological evaluation, molecular modeling and QSAR studies.
    Korabecny J; Dolezal R; Cabelova P; Horova A; Hruba E; Ricny J; Sedlacek L; Nepovimova E; Spilovska K; Andrs M; Musilek K; Opletalova V; Sepsova V; Ripova D; Kuca K
    Eur J Med Chem; 2014 Jul; 82():426-38. PubMed ID: 24929293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis, biological evaluation and docking studies of 2,3-dihydroquinazolin-4(1H)-one derivatives as inhibitors of cholinesterases.
    Sarfraz M; Sultana N; Rashid U; Akram MS; Sadiq A; Tariq MI
    Bioorg Chem; 2017 Feb; 70():237-244. PubMed ID: 28126287
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel multipotent phenylthiazole-tacrine hybrids for the inhibition of cholinesterase activity, β-amyloid aggregation and Ca²⁺ overload.
    Wang Y; Wang F; Yu JP; Jiang FC; Guan XL; Wang CM; Li L; Cao H; Li MX; Chen JG
    Bioorg Med Chem; 2012 Nov; 20(21):6513-22. PubMed ID: 23000296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and Biological Evaluation of New Tacrine Analogues under Microwave Irradiation.
    Alshareef HF; Mohamed HAEH; Salaheldin AM
    Chem Pharm Bull (Tokyo); 2017; 65(8):732-738. PubMed ID: 28768927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.