BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29887527)

  • 21. From NAD
    Yu MJ; Chen SL
    Chemistry; 2017 Jun; 23(31):7545-7557. PubMed ID: 28374531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of a [4Fe-4S]-dependent LarE sulfur insertase that facilitates nickel-pincer nucleotide cofactor biosynthesis in Thermotoga maritima.
    Chatterjee S; Parson KF; Ruotolo BT; McCracken J; Hu J; Hausinger RP
    J Biol Chem; 2022 Jul; 298(7):102131. PubMed ID: 35700827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biological pincer complexes.
    Nevarez J; Turmo A; Hu J; Hausinger RP
    ChemCatChem; 2020 Sep; 12(17):4242-4254. PubMed ID: 33072225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New metal cofactors and recent metallocofactor insights.
    Hausinger RP
    Curr Opin Struct Biol; 2019 Dec; 59():1-8. PubMed ID: 30711735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ENZYMOLOGY. It costs more than a nickel.
    Zamble D
    Science; 2015 Jul; 349(6243):35-6. PubMed ID: 26138967
    [No Abstract]   [Full Text] [Related]  

  • 26. Enantioselective regulation of lactate racemization by LarR in Lactobacillus plantarum.
    Desguin B; Goffin P; Bakouche N; Diman A; Viaene E; Dandoy D; Fontaine L; Hallet B; Hols P
    J Bacteriol; 2015 Jan; 197(1):219-30. PubMed ID: 25349156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of fatty acid-CoA racemase from Mycobacterium tuberculosis H37Rv.
    Lee KS; Park SM; Rhee KH; Bang WG; Hwang KY; Chi YM
    Proteins; 2006 Aug; 64(3):817-22. PubMed ID: 16755588
    [No Abstract]   [Full Text] [Related]  

  • 28. Lactate racemization as a rescue pathway for supplying D-lactate to the cell wall biosynthesis machinery in Lactobacillus plantarum.
    Goffin P; Deghorain M; Mainardi JL; Tytgat I; Champomier-Vergès MC; Kleerebezem M; Hols P
    J Bacteriol; 2005 Oct; 187(19):6750-61. PubMed ID: 16166538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of the LarB-Substrate Complex and Identification of a Reaction Intermediate during Nickel-Pincer Nucleotide Cofactor Biosynthesis.
    Chatterjee S; Nevarez JL; Rankin JA; Hu J; Hausinger RP
    Biochemistry; 2023 Nov; 62(21):3096-3104. PubMed ID: 37831946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of the reaction catalyzed by mandelate racemase: importance of electrophilic catalysis by glutamic acid 317.
    Mitra B; Kallarakal AT; Kozarich JW; Gerlt JA; Clifton JG; Petsko GA; Kenyon GL
    Biochemistry; 1995 Mar; 34(9):2777-87. PubMed ID: 7893689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nickel-dependent metalloenzymes.
    Boer JL; Mulrooney SB; Hausinger RP
    Arch Biochem Biophys; 2014 Feb; 544():142-52. PubMed ID: 24036122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic properties of the metal ion variants of mandelate racemase reveal alterations in the apparent electrophilicity of the metal cofactor.
    Harty ML; Sharma AN; Bearne SL
    Metallomics; 2019 Mar; 11(3):707-723. PubMed ID: 30843025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the structure and function of Klebsiella pneumoniae allantoin racemase.
    French JB; Neau DB; Ealick SE
    J Mol Biol; 2011 Jul; 410(3):447-60. PubMed ID: 21616082
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural and Functional Adaptation of Vancomycin Resistance VanT Serine Racemases.
    Meziane-Cherif D; Stogios PJ; Evdokimova E; Egorova O; Savchenko A; Courvalin P
    mBio; 2015 Aug; 6(4):e00806. PubMed ID: 26265719
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of the reaction catalyzed by mandelate racemase. 2. Crystal structure of mandelate racemase at 2.5-A resolution: identification of the active site and possible catalytic residues.
    Neidhart DJ; Howell PL; Petsko GA; Powers VM; Li RS; Kenyon GL; Gerlt JA
    Biochemistry; 1991 Sep; 30(38):9264-73. PubMed ID: 1892834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and conformational stability of a tetrameric thermostable N-succinylamino acid racemase.
    Pozo-Dengra J; Martínez-Rodríguez S; Contreras LM; Prieto J; Andújar-Sánchez M; Clemente-Jiménez JM; Las Heras-Vázquez FJ; Rodríguez-Vico F; Neira JL
    Biopolymers; 2009 Sep; 91(9):757-72. PubMed ID: 19517534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural insights into how GTP-dependent conformational changes in a metallochaperone UreG facilitate urease maturation.
    Yuen MH; Fong YH; Nim YS; Lau PH; Wong KB
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):E10890-E10898. PubMed ID: 29203664
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The crystal structure of D-threonine aldolase from Alcaligenes xylosoxidans provides insight into a metal ion assisted PLP-dependent mechanism.
    Uhl MK; Oberdorfer G; Steinkellner G; Riegler-Berket L; Mink D; van Assema F; Schürmann M; Gruber K
    PLoS One; 2015; 10(4):e0124056. PubMed ID: 25884707
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Limited proteolysis of Escherichia coli cytidine 5'-triphosphate synthase. Identification of residues required for CTP formation and GTP-dependent activation of glutamine hydrolysis.
    Simard D; Hewitt KA; Lunn F; Iyengar A; Bearne SL
    Eur J Biochem; 2003 May; 270(10):2195-206. PubMed ID: 12752439
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of the reaction catalyzed by mandelate racemase: structure and mechanistic properties of the K166R mutant.
    Kallarakal AT; Mitra B; Kozarich JW; Gerlt JA; Clifton JG; Petsko GA; Kenyon GL
    Biochemistry; 1995 Mar; 34(9):2788-97. PubMed ID: 7893690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.