These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29888043)

  • 1. Predicting the Outcome of Patient-Provider Communication Sequences using Recurrent Neural Networks and Probabilistic Models.
    Hasan M; Kotov A; Carcone AI; Dong M; Naar S
    AMIA Jt Summits Transl Sci Proc; 2018; 2017():64-73. PubMed ID: 29888043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying Effective Motivational Interviewing Communication Sequences Using Automated Pattern Analysis.
    Hasan M; Carcone AI; Naar S; Eggly S; Alexander GL; Hartlieb KEB; Kotov A
    J Healthc Inform Res; 2019; 3(1):86-106. PubMed ID: 31602420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting conversation topics in primary care office visits from transcripts of patient-provider interactions.
    Park J; Kotzias D; Kuo P; Logan Iv RL; Merced K; Singh S; Tanana M; Karra Taniskidou E; Lafata JE; Atkins DC; Tai-Seale M; Imel ZE; Smyth P
    J Am Med Inform Assoc; 2019 Dec; 26(12):1493-1504. PubMed ID: 31532490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explicit Duration Recurrent Networks.
    Yu SZ
    IEEE Trans Neural Netw Learn Syst; 2022 Jul; 33(7):3120-3130. PubMed ID: 33497341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An innovative supervised longitudinal learning procedure of recurrent neural networks with temporal data augmentation: Insights from predicting fetal macrosomia and large-for-gestational age.
    Liu R; Yao Y; Zhang C; Zhang B
    Comput Biol Med; 2024 Jul; 177():108665. PubMed ID: 38820775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Markovian architectural bias of recurrent neural networks.
    Tino P; Cernanský M; Benusková L
    IEEE Trans Neural Netw; 2004 Jan; 15(1):6-15. PubMed ID: 15387243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Markovian RNN: An Adaptive Time Series Prediction Network With HMM-Based Switching for Nonstationary Environments.
    Ilhan F; Karaahmetoglu O; Balaban I; Kozat SS
    IEEE Trans Neural Netw Learn Syst; 2023 Feb; 34(2):715-728. PubMed ID: 34370675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SGORNN: Combining scalar gates and orthogonal constraints in recurrent networks.
    Taylor-Melanson W; Ferreira MD; Matwin S
    Neural Netw; 2023 Feb; 159():25-33. PubMed ID: 36525915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cough event classification by pretrained deep neural network.
    Liu JM; You M; Wang Z; Li GZ; Xu X; Qiu Z
    BMC Med Inform Decis Mak; 2015; 15 Suppl 4(Suppl 4):S2. PubMed ID: 26606168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning dynamical systems by recurrent neural networks from orbits.
    Kimura M; Nakano R
    Neural Netw; 1998 Dec; 11(9):1589-1599. PubMed ID: 12662730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Usability testing of Avoiding Diabetes Thru Action Plan Targeting (ADAPT) decision support for integrating care-based counseling of pre-diabetes in an electronic health record.
    Chrimes D; Kitos NR; Kushniruk A; Mann DM
    Int J Med Inform; 2014 Sep; 83(9):636-47. PubMed ID: 24981988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNNCon: Contribution Coverage Testing for Stacked Recurrent Neural Networks.
    Du X; Zeng H; Chen S; Lei Z
    Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recurrent Neural Networks With Auxiliary Memory Units.
    Wang J; Zhang L; Guo Q; Yi Z
    IEEE Trans Neural Netw Learn Syst; 2018 May; 29(5):1652-1661. PubMed ID: 28333646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A state-based probabilistic model for tumor respiratory motion prediction.
    Kalet A; Sandison G; Wu H; Schmitz R
    Phys Med Biol; 2010 Dec; 55(24):7615-31. PubMed ID: 21113094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Emotional States Using Behavioral Markers Derived From Passively Sensed Data: Data-Driven Machine Learning Approach.
    Sükei E; Norbury A; Perez-Rodriguez MM; Olmos PM; Artés A
    JMIR Mhealth Uhealth; 2021 Mar; 9(3):e24465. PubMed ID: 33749612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal indexing of medical entity in Chinese clinical notes.
    Liu Z; Wang X; Chen Q; Tang B; Xu H
    BMC Med Inform Decis Mak; 2019 Jan; 19(Suppl 1):17. PubMed ID: 30700331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explainable automated coding of clinical notes using hierarchical label-wise attention networks and label embedding initialisation.
    Dong H; Suárez-Paniagua V; Whiteley W; Wu H
    J Biomed Inform; 2021 Apr; 116():103728. PubMed ID: 33711543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical Relation Extraction Toward Drug Safety Surveillance Using Electronic Health Record Narratives: Classical Learning Versus Deep Learning.
    Munkhdalai T; Liu F; Yu H
    JMIR Public Health Surveill; 2018 Apr; 4(2):e29. PubMed ID: 29695376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing Interpretable Recurrent Neural Networks for Video Reconstruction via Deep Unfolding.
    Luong HV; Joukovsky B; Deligiannis N
    IEEE Trans Image Process; 2021; 30():4099-4113. PubMed ID: 33798083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model.
    Emdadi A; Eslahchi C
    BMC Bioinformatics; 2021 Jan; 22(1):33. PubMed ID: 33509079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.