These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 29888072)
1. Deep Learning data integration for better risk stratification models of bladder cancer. Poirion OB; Chaudhary K; Garmire LX AMIA Jt Summits Transl Sci Proc; 2018; 2017():197-206. PubMed ID: 29888072 [TBL] [Abstract][Full Text] [Related]
2. Survival prediction in patients with colon adenocarcinoma via multi-omics data integration using a deep learning algorithm. Lv J; Wang J; Shang X; Liu F; Guo S Biosci Rep; 2020 Dec; 40(12):. PubMed ID: 33258470 [TBL] [Abstract][Full Text] [Related]
3. Deep Learning-Based Multi-Omics Data Integration Reveals Two Prognostic Subtypes in High-Risk Neuroblastoma. Zhang L; Lv C; Jin Y; Cheng G; Fu Y; Yuan D; Tao Y; Guo Y; Ni X; Shi T Front Genet; 2018; 9():477. PubMed ID: 30405689 [TBL] [Abstract][Full Text] [Related]
4. A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data. Xu J; Wu P; Chen Y; Meng Q; Dawood H; Dawood H BMC Bioinformatics; 2019 Oct; 20(1):527. PubMed ID: 31660856 [TBL] [Abstract][Full Text] [Related]
5. Predicting Deep Learning Based Multi-Omics Parallel Integration Survival Subtypes in Lung Cancer Using Reverse Phase Protein Array Data. Takahashi S; Asada K; Takasawa K; Shimoyama R; Sakai A; Bolatkan A; Shinkai N; Kobayashi K; Komatsu M; Kaneko S; Sese J; Hamamoto R Biomolecules; 2020 Oct; 10(10):. PubMed ID: 33086649 [TBL] [Abstract][Full Text] [Related]
6. Survival stratification for colorectal cancer via multi-omics integration using an autoencoder-based model. Song H; Ruan C; Xu Y; Xu T; Fan R; Jiang T; Cao M; Song J Exp Biol Med (Maywood); 2022 Jun; 247(11):898-909. PubMed ID: 34904882 [TBL] [Abstract][Full Text] [Related]
7. Robust Prognostic Subtyping of Muscle-Invasive Bladder Cancer Revealed by Deep Learning-Based Multi-Omics Data Integration. Zhang X; Wang J; Lu J; Su L; Wang C; Huang Y; Zhang X; Zhu X Front Oncol; 2021; 11():689626. PubMed ID: 34422643 [TBL] [Abstract][Full Text] [Related]
8. MMDAE-HGSOC: A novel method for high-grade serous ovarian cancer molecular subtypes classification based on multi-modal deep autoencoder. Wang HQ; Li HL; Han JL; Feng ZP; Deng HX; Han X Comput Biol Chem; 2023 Aug; 105():107906. PubMed ID: 37336028 [TBL] [Abstract][Full Text] [Related]
9. Integration of pan-cancer multi-omics data for novel mixed subgroup identification using machine learning methods. Khadirnaikar S; Shukla S; Prasanna SRM PLoS One; 2023; 18(10):e0287176. PubMed ID: 37856446 [TBL] [Abstract][Full Text] [Related]
10. Construction and validation of a bladder cancer risk model based on autophagy-related genes. Shen C; Yan Y; Yang S; Wang Z; Wu Z; Li Z; Zhang Z; Lin Y; Li P; Hu H Funct Integr Genomics; 2023 Jan; 23(1):46. PubMed ID: 36689018 [TBL] [Abstract][Full Text] [Related]
11. Deep learning algorithm reveals two prognostic subtypes in patients with gliomas. Tian J; Zhu M; Ren Z; Zhao Q; Wang P; He CK; Zhang M; Peng X; Wu B; Feng R; Fu M BMC Bioinformatics; 2022 Oct; 23(1):417. PubMed ID: 36221066 [TBL] [Abstract][Full Text] [Related]
12. ProgCAE: a deep learning-based method that integrates multi-omics data to predict cancer subtypes. Liu Q; Song K Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37232375 [TBL] [Abstract][Full Text] [Related]
13. Supervised graph contrastive learning for cancer subtype identification through multi-omics data integration. Chen F; Peng W; Dai W; Wei S; Fu X; Liu L; Liu L Health Inf Sci Syst; 2024 Dec; 12(1):12. PubMed ID: 38404715 [TBL] [Abstract][Full Text] [Related]
14. Performance Comparison of Deep Learning Autoencoders for Cancer Subtype Detection Using Multi-Omics Data. Franco EF; Rana P; Cruz A; Calderón VV; Azevedo V; Ramos RTJ; Ghosh P Cancers (Basel); 2021 Apr; 13(9):. PubMed ID: 33921978 [TBL] [Abstract][Full Text] [Related]
15. Bidirectional deep neural networks to integrate RNA and DNA data for predicting outcome for patients with hepatocellular carcinoma. Huang G; Wang C; Fu X Future Oncol; 2021 Nov; 17(33):4481-4495. PubMed ID: 34374301 [TBL] [Abstract][Full Text] [Related]
16. Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer. Chaudhary K; Poirion OB; Lu L; Garmire LX Clin Cancer Res; 2018 Mar; 24(6):1248-1259. PubMed ID: 28982688 [TBL] [Abstract][Full Text] [Related]
17. Deep Learning-Based Multi-Omics Integration Robustly Predicts Relapse in Prostate Cancer. Wei Z; Han D; Zhang C; Wang S; Liu J; Chao F; Song Z; Chen G Front Oncol; 2022; 12():893424. PubMed ID: 35814412 [TBL] [Abstract][Full Text] [Related]
18. Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer. Malik V; Kalakoti Y; Sundar D BMC Genomics; 2021 Mar; 22(1):214. PubMed ID: 33761889 [TBL] [Abstract][Full Text] [Related]
19. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping. Madhumita ; Paul S Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous Interrogation of Cancer Omics to Identify Subtypes With Significant Clinical Differences. Xu A; Chen J; Peng H; Han G; Cai H Front Genet; 2019; 10():236. PubMed ID: 30984238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]