These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29888171)

  • 1. Toward determining melt pool quality metrics via coaxial monitoring in laser powder bed fusion.
    Fisher BA; Lane B; Yeung H; Beuth J
    Manuf Lett; 2018 Jan; 15(Pt B):119-121. PubMed ID: 29888171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the effects of laser control in laser powder bed fusion on near-surface pore formation via combined analysis of in-situ melt pool monitoring and X-ray computed tomography.
    Kim FH; Yeung H; Garboczi EJ
    Addit Manuf; 2021 Dec; 48(A):. PubMed ID: 36733468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing.
    Yeung H; Lane B; Fox J
    Addit Manuf; 2019 Dec; 30():. PubMed ID: 34141600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-Sectional Melt Pool Geometry of Laser Scanned Tracks and Pads on Nickel Alloy 718 for the 2022 Additive Manufacturing Benchmark Challenges.
    Weaver JS; Deisenroth D; Mekhontsev S; Lane BM; Levine LE; Yeung H
    Integr Mater Manuf Innov; 2024; 13(2):. PubMed ID: 38903904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Melt Pool Behavior of 316L Stainless Steel in Laser Powder Bed Fusion Additive Manufacturing.
    Zhang Z; Zhang T; Sun C; Karna S; Yuan L
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topographic Measurement of Individual Laser Tracks in Alloy 625 Bare Plates.
    Ricker RE; Heigel JC; Lane BM; Zhirnov I; Levine LE
    Integr Mater Manuf Innov; 2019; 8(4):. PubMed ID: 33029475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Melt Pool Characteristics and Process Parameters Using a Coaxial Monitoring System during Directed Energy Deposition in Additive Manufacturing.
    Kledwig C; Perfahl H; Reisacher M; Brückner F; Bliedtner J; Leyens C
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30669432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the influence of non-uniform gas speed on the melt pool depth in laser powder bed fusion additive manufacturing.
    Weaver JS; Schlenoff A; Deisenroth D; Moylan S
    Rapid Prototyp J; 2023 Aug; 29(8):. PubMed ID: 38486812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple Sensor Detection of Process Phenomena in Laser Powder Bed Fusion.
    Lane B; Whitenton E; Moylan S
    Proc SPIE Int Soc Opt Eng; 2016; 986104():. PubMed ID: 32165779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous Comprehensive Monitoring of Melt Pool Morphology Under Realistic Printing Scenarios with Laser Powder Bed Fusion.
    Vallabh CKP; Zhao X
    3D Print Addit Manuf; 2023 Feb; 10(1):101-110. PubMed ID: 36998791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient Laser Energy Absorption, Co-axial Melt Pool Monitoring, and Relationship to Melt Pool Morphology.
    Lane B; Zhirnov I; Mekhontsev S; Grantham S; Ricker R; Rauniyar S; Chou K
    Addit Manuf; 2020 Dec; 36():. PubMed ID: 34141601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hardness Prediction of Laser Powder Bed Fusion Product Based on Melt Pool Radiation Intensity.
    Zhang T; Zhou X; Zhang P; Duan Y; Cheng X; Wang X; Ding G
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical design and Initial Results from The National Institute of Standards and Technology's AMMT/TEMPS Facility.
    Grantham S; Lane B; Neira J; Mekhontsev S; Vlasea M; Hanssen L
    Proc SPIE Int Soc Opt Eng; 2016; 9738():. PubMed ID: 28579666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spattering mechanism of laser powder bed fusion additive manufacturing on heterogeneous surfaces.
    Ikeshoji TT; Yonehara M; Kato C; Yanaga Y; Takeshita K; Kyogoku H
    Sci Rep; 2022 Nov; 12(1):20384. PubMed ID: 36437289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate determination of laser spot position during laser powder bed fusion process thermography.
    Zhirnov I; Mekhontsev S; Lane B; Grantham S; Bura N
    Manuf Lett; 2020; 23():. PubMed ID: 32855904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring Piezoelectric Actuation towards Its Applications in Laser Powder Bed Fusion Additive Manufacturing.
    Griffin C; Mei H; Karna S; Zhang T; Giurgiutiu V; Yuan L
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Process Monitoring Dataset from the Additive Manufacturing Metrology Testbed (AMMT): "Three-Dimensional Scan Strategies".
    Lane B; Yeung H
    J Res Natl Inst Stand Technol; 2019; 124():1-14. PubMed ID: 34877171
    [No Abstract]   [Full Text] [Related]  

  • 18. Methodology to Determine Melt Pool Anomalies in Powder Bed Fusion of Metals Using a Laser Beam by Means of Process Monitoring and Sensor Data Fusion.
    Harbig J; Wenzler DL; Baehr S; Kick MK; Merschroth H; Wimmer A; Weigold M; Zaeh MF
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Process Monitoring Dataset from the Additive Manufacturing Metrology Testbed (AMMT): Overhang Part X4.
    Lane B; Yeung H
    J Res Natl Inst Stand Technol; 2020; 125():125027. PubMed ID: 39015411
    [No Abstract]   [Full Text] [Related]  

  • 20. Short Time Correlation Analysis of Melt Pool Behavior in Laser Metal Deposition Using Coaxial Optical Monitoring.
    Zavalov YN; Dubrov AV
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.