These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 29888171)
21. A residual heat compensation based scan strategy for powder bed fusion additive manufacturing. Yeung H; Lane B Manuf Lett; 2020; 25():. PubMed ID: 34123726 [TBL] [Abstract][Full Text] [Related]
22. Data analytics approach for melt-pool geometries in metal additive manufacturing. Lee S; Peng J; Shin D; Choi YS Sci Technol Adv Mater; 2019; 20(1):972-978. PubMed ID: 31692926 [TBL] [Abstract][Full Text] [Related]
23. Numerical Simulation in the Melt Pool Evolution of Laser Powder Bed Fusion Process for Ti6Al4V. Xu Y; Zhang D; Deng J; Wu X; Li L; Xie Y; Poprawe R; Schleifenbaum JH; Ziegler S Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363176 [TBL] [Abstract][Full Text] [Related]
24. Investigation of SLM Process in Terms of Temperature Distribution and Melting Pool Size: Modeling and Experimental Approaches. Ansari MJ; Nguyen DS; Park HS Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003432 [TBL] [Abstract][Full Text] [Related]
25. Formation processes for large ejecta and interactions with melt pool formation in powder bed fusion additive manufacturing. Nassar AR; Gundermann MA; Reutzel EW; Guerrier P; Krane MH; Weldon MJ Sci Rep; 2019 Mar; 9(1):5038. PubMed ID: 30911016 [TBL] [Abstract][Full Text] [Related]
26. Study on the Effect of Inter-Layer Cooling Time on Porosity and Melt Pool in Inconel 718 Components Processed by Laser Powder Bed Fusion. Baldi N; Giorgetti A; Palladino M; Giovannetti I; Arcidiacono G; Citti P Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297054 [TBL] [Abstract][Full Text] [Related]
27. Online Monitoring Technology of Metal Powder Bed Fusion Processes: A Review. Hou ZJ; Wang Q; Zhao CG; Zheng J; Tian JM; Ge XH; Liu YG Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363190 [TBL] [Abstract][Full Text] [Related]
28. Thermographic Measurements of the Commercial Laser Powder Bed Fusion Process at NIST. Lane B; Moylan S; Whitenton E; Ma L Rapid Prototyp J; 2016; 22(5):778-787. PubMed ID: 28058036 [TBL] [Abstract][Full Text] [Related]
29. Coaxial Monitoring of AISI 316L Thin Walls Fabricated by Direct Metal Laser Deposition. Errico V; Campanelli SL; Angelastro A; Dassisti M; Mazzarisi M; Bonserio C Materials (Basel); 2021 Feb; 14(3):. PubMed ID: 33535644 [TBL] [Abstract][Full Text] [Related]
30. X-ray Computed Tomography Data of Additive Manufacturing Metrology Testbed (AMMT) Parts: "Overhang Part X4". Praniewicz M; Lane B; Kim F; Saldana C J Res Natl Inst Stand Technol; 2020; 125():125031. PubMed ID: 39015413 [No Abstract] [Full Text] [Related]
31. Measurements of melt pool geometry and cooling rates of individual laser traces on IN625 bare plates. Lane B; Heigel J; Ricker R; Zhirnov I; Khromschenko V; Weaver J; Phan T; Stoudt M; Mekhontsev S; Levine L Integr Mater Manuf Innov; 2020; 9(1):. PubMed ID: 34123701 [TBL] [Abstract][Full Text] [Related]
32. Laser spot size and scaling laws for laser beam additive manufacturing. Weaver JS; Heigel JC; Lane BM J Mater Process Technol; 2022 Jan; 73():. PubMed ID: 36733901 [TBL] [Abstract][Full Text] [Related]
33. Data-driven characterization of thermal models for powder-bed-fusion additive manufacturing. Yan W; Lu Y; Jones K; Yang Z; Fox J; Witherell P; Wagner G; Liu WK Addit Manuf; 2020; 36():. PubMed ID: 34123733 [TBL] [Abstract][Full Text] [Related]
34. Melt Pool Changes Characterization in Laser-Processed H11 Hot Work Tool Steel Using Point-by-Point Scanning Mode towards LPBF Process Optimization. Fryzowicz K; Bardo R; Dziurka R; Kawałko J; Cios G; Stwora A; Bała P Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336372 [TBL] [Abstract][Full Text] [Related]
35. Dynamics of pore formation during laser powder bed fusion additive manufacturing. Martin AA; Calta NP; Khairallah SA; Wang J; Depond PJ; Fong AY; Thampy V; Guss GM; Kiss AM; Stone KH; Tassone CJ; Nelson Weker J; Toney MF; van Buuren T; Matthews MJ Nat Commun; 2019 Apr; 10(1):1987. PubMed ID: 31040270 [TBL] [Abstract][Full Text] [Related]
36. Encoding Stability into Laser Powder Bed Fusion Monitoring Using Temporal Features and Pore Density Modelling. Booth BG; Heylen R; Nourazar M; Verhees D; Philips W; Bey-Temsamani A Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632151 [TBL] [Abstract][Full Text] [Related]
37. A Review of Spatter in Laser Powder Bed Fusion Additive Manufacturing: In Situ Detection, Generation, Effects, and Countermeasures. Li Z; Li H; Yin J; Li Y; Nie Z; Li X; You D; Guan K; Duan W; Cao L; Wang D; Ke L; Liu Y; Zhao P; Wang L; Zhu K; Zhang Z; Gao L; Hao L Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014288 [TBL] [Abstract][Full Text] [Related]
38. Inline Quality Control through Optical Deep Learning-Based Porosity Determination for Powder Bed Fusion of Polymers. Schlicht S; Jaksch A; Drummer D Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267706 [TBL] [Abstract][Full Text] [Related]
39. Reuse of Ti6Al4V Powder and Its Impact on Surface Tension, Melt Pool Behavior and Mechanical Properties of Additively Manufactured Components. Skalon M; Meier B; Leitner T; Arneitz S; Amancio-Filho ST; Sommitsch C Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33800747 [TBL] [Abstract][Full Text] [Related]
40. In-Situ Characterization of Pore Formation Dynamics in Pulsed Wave Laser Powder Bed Fusion. Hojjatzadeh SMH; Guo Q; Parab ND; Qu M; Escano LI; Fezzaa K; Everhart W; Sun T; Chen L Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072400 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]