These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 29888171)
41. Improved accuracy of continuum surface flux models for metal additive manufacturing melt pool simulations. Much N; Schreter-Fleischhacker M; Munch P; Kronbichler M; Wall WA; Meier C Adv Model Simul Eng Sci; 2024; 11(1):16. PubMed ID: 39184936 [TBL] [Abstract][Full Text] [Related]
42. Thermal-porosity characterization data of additively manufactured Ti-6Al-4V thin-walled structure via laser engineered net shaping. Zamiela C; Tian W; Guo S; Bian L Data Brief; 2023 Dec; 51():109722. PubMed ID: 37965595 [TBL] [Abstract][Full Text] [Related]
43. 316L Stainless Steel Powders for Additive Manufacturing: Relationships of Powder Rheology, Size, Size Distribution to Part Properties. Groarke R; Danilenkoff C; Karam S; McCarthy E; Michel B; Mussatto A; Sloane J; O' Neill A; Raghavendra R; Brabazon D Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33291734 [TBL] [Abstract][Full Text] [Related]
44. Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed Fusion of SS316L. Ur Rehman A; Pitir F; Salamci MU Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771790 [TBL] [Abstract][Full Text] [Related]
45. In situ melt pool measurements for laser powder bed fusion using multi sensing and correlation analysis. Wang R; Garcia D; Kamath RR; Dou C; Ma X; Shen B; Choo H; Fezzaa K; Yu HZ; Kong ZJ Sci Rep; 2022 Aug; 12(1):13716. PubMed ID: 35962031 [TBL] [Abstract][Full Text] [Related]
46. A Pragmatic Approach for Rapid, Non-Destructive Assessment of Defect Types in Laser Powder Bed Fusion Based on Melt Pool Monitoring Data. Engelhardt A; Wegener T; Niendorf T Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998369 [TBL] [Abstract][Full Text] [Related]
47. On thermal properties of metallic powder in laser powder bed fusion additive manufacturing. Zhang S; Lane B; Whiting J; Chou K J Manuf Process; 2019; 47():. PubMed ID: 32855624 [TBL] [Abstract][Full Text] [Related]
48. Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density. Rausch AM; Küng VE; Pobel C; Markl M; Körner C Materials (Basel); 2017 Sep; 10(10):. PubMed ID: 28937633 [TBL] [Abstract][Full Text] [Related]
49. Process Monitoring Using Synchronized Path Infrared Thermography in PBF-LB/M. Höfflin D; Sauer C; Schiffler A; Hartmann J Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015704 [TBL] [Abstract][Full Text] [Related]
50. Characterization of Metal Powders Used for Additive Manufacturing. Slotwinski JA; Garboczi EJ; Stutzman PE; Ferraris CF; Watson SS; Peltz MA J Res Natl Inst Stand Technol; 2014; 119():460-93. PubMed ID: 26601040 [TBL] [Abstract][Full Text] [Related]
52. Nondiffractive beam shaping for enhanced optothermal control in metal additive manufacturing. Tumkur TU; Voisin T; Shi R; Depond PJ; Roehling TT; Wu S; Crumb MF; Roehling JD; Guss G; Khairallah SA; Matthews MJ Sci Adv; 2021 Sep; 7(38):eabg9358. PubMed ID: 34524849 [TBL] [Abstract][Full Text] [Related]
53. Laser Powder Bed Fusion (LPBF) of In718 and the Impact of Pre-Heating at 500 and 1000 °C: Operando Study. Ur Rehman A; Pitir F; Salamci MU Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772210 [TBL] [Abstract][Full Text] [Related]
54. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing. Ly S; Rubenchik AM; Khairallah SA; Guss G; Matthews MJ Sci Rep; 2017 Jun; 7(1):4085. PubMed ID: 28642468 [TBL] [Abstract][Full Text] [Related]
55. Combining thermal imaging and spectral pyrometry for express temperature mapping in additive manufacturing. Grishin MY; Sdvizhenskii PA; Asyutin RD; Tretyakov RS; Stavertiy AY; Pershin SM; Liu DS; Lednev VN Appl Opt; 2023 Jan; 62(2):335-341. PubMed ID: 36630231 [TBL] [Abstract][Full Text] [Related]
56. Influence of Latent Heat of Fusion on the Melt Pool Shape and Size in the Direct Laser Deposition Process. Turichin G; Mukin D; Valdaytseva E; Sannikov M Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499855 [TBL] [Abstract][Full Text] [Related]
57. Stability of a Melt Pool during 3D-Printing of an Unsupported Steel Component and Its Influence on Roughness. Skalon M; Meier B; Gruberbauer A; Amancio-Filho ST; Sommitsch C Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32050719 [No Abstract] [Full Text] [Related]
58. Review of Visual Measurement Methods for Metal Vaporization Processes in Laser Powder Bed Fusion. Liu J; Wei B; Chang H; Li J; Yang G Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512662 [TBL] [Abstract][Full Text] [Related]
59. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Zhao C; Fezzaa K; Cunningham RW; Wen H; De Carlo F; Chen L; Rollett AD; Sun T Sci Rep; 2017 Jun; 7(1):3602. PubMed ID: 28620232 [TBL] [Abstract][Full Text] [Related]
60. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes. Calta NP; Wang J; Kiss AM; Martin AA; Depond PJ; Guss GM; Thampy V; Fong AY; Weker JN; Stone KH; Tassone CJ; Kramer MJ; Toney MF; Van Buuren A; Matthews MJ Rev Sci Instrum; 2018 May; 89(5):055101. PubMed ID: 29864819 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]