These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29888260)

  • 1. Pandemic Avian Influenza and Intra/Interhaemagglutinin Subtype Electrostatic Variation among Viruses Isolated from Avian, Mammalian, and Human Hosts.
    Righetto I; Filippini F
    Biomed Res Int; 2018; 2018():3870508. PubMed ID: 29888260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The adaptability of H9N2 avian influenza A virus to humans: A comparative docking simulation study.
    Xu H; Qian J; Song Y; Ming D
    Biochem Biophys Res Commun; 2020 Sep; 529(4):963-969. PubMed ID: 32819606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Newly Emergent Highly Pathogenic H5N9 Subtype Avian Influenza A Virus.
    Yu Y; Wang X; Jin T; Wang H; Si W; Yang H; Wu J; Yan Y; Liu G; Sang X; Wu X; Gao Y; Xia X; Yu X; Pan J; Gao GF; Zhou J
    J Virol; 2015 Sep; 89(17):8806-15. PubMed ID: 26085150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normal modes analysis and surface electrostatics of haemagglutinin proteins as fingerprints for high pathogenic type A influenza viruses.
    Righetto I; Filippini F
    BMC Bioinformatics; 2020 Aug; 21(Suppl 10):354. PubMed ID: 32838732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Surface Electrostatics and Normal Mode Analysis of High and Low Pathogenic H7N7 Avian Influenza Viruses.
    Baggio G; Filippini F; Righetto I
    Viruses; 2023 Jan; 15(2):. PubMed ID: 36851517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. (Highly pathogenic) avian influenza as a zoonotic agent.
    Kalthoff D; Globig A; Beer M
    Vet Microbiol; 2010 Jan; 140(3-4):237-45. PubMed ID: 19782482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic Variation of Haemagglutinin as a Hallmark of the Evolution of Avian Influenza Viruses.
    Heidari A; Righetto I; Filippini F
    Sci Rep; 2018 Jan; 8(1):1929. PubMed ID: 29386534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative structural analysis of haemagglutinin proteins from type A influenza viruses: conserved and variable features.
    Righetto I; Milani A; Cattoli G; Filippini F
    BMC Bioinformatics; 2014 Dec; 15(1):363. PubMed ID: 25492298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The changing nature of avian influenza A virus (H5N1).
    Watanabe Y; Ibrahim MS; Suzuki Y; Ikuta K
    Trends Microbiol; 2012 Jan; 20(1):11-20. PubMed ID: 22153752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influenza Virus Hemagglutinin Glycoproteins with Different N-Glycan Patterns Activate Dendritic Cells In Vitro.
    Liu WC; Lin YL; Spearman M; Cheng PY; Butler M; Wu SC
    J Virol; 2016 Jul; 90(13):6085-6096. PubMed ID: 27099319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infection with multiple avian influenza viruses in a man without poultry-handling practices suggesting an increased probability of emergent pandemic influenza virus in general population.
    Yang P; Shi W; Cui S; Zhang Y; Liu X; Wang Q
    Clin Infect Dis; 2012 Jan; 54(2):307. PubMed ID: 22144542
    [No Abstract]   [Full Text] [Related]  

  • 12. Free energy simulations reveal a double mutant avian H5N1 virus hemagglutinin with altered receptor binding specificity.
    Das P; Li J; Royyuru AK; Zhou R
    J Comput Chem; 2009 Aug; 30(11):1654-63. PubMed ID: 19399777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H5N1 receptor specificity as a factor in pandemic risk.
    Paulson JC; de Vries RP
    Virus Res; 2013 Dec; 178(1):99-113. PubMed ID: 23619279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intense circulation of A/H5N1 and other avian influenza viruses in Cambodian live-bird markets with serological evidence of sub-clinical human infections.
    Horm SV; Tarantola A; Rith S; Ly S; Gambaretti J; Duong V; Y P; Sorn S; Holl D; Allal L; Kalpravidh W; Dussart P; Horwood PF; Buchy P
    Emerg Microbes Infect; 2016 Jul; 5(7):e70. PubMed ID: 27436362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt.
    Kim SH
    Viruses; 2018 Mar; 10(3):. PubMed ID: 29522492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origins and Evolutionary Dynamics of H3N2 Canine Influenza Virus.
    Zhu H; Hughes J; Murcia PR
    J Virol; 2015 May; 89(10):5406-18. PubMed ID: 25740996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidemiology, ecology and gene pool of influenza A virus in Egypt: will Egypt be the epicentre of the next influenza pandemic?
    Abdelwhab EM; Abdel-Moneim AS
    Virulence; 2015; 6(1):6-18. PubMed ID: 25635701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic analysis of nonstructural genes (NS1 and NS2) of H9N2 and H5N1 viruses recently isolated in Israel.
    Banet-Noach C; Panshin A; Golender N; Simanov L; Rozenblut E; Pokamunski S; Pirak M; Tendler Y; García M; Gelman B; Pasternak R; Perk S
    Virus Genes; 2007 Apr; 34(2):157-68. PubMed ID: 17171546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Avian influenza viruses and human health.
    Alexander DJ
    Dev Biol (Basel); 2006; 124():77-84. PubMed ID: 16447497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Addition of N-glycosylation sites on the globular head of the H5 hemagglutinin induces the escape of highly pathogenic avian influenza A H5N1 viruses from vaccine-induced immunity.
    Hervé PL; Lorin V; Jouvion G; Da Costa B; Escriou N
    Virology; 2015 Dec; 486():134-45. PubMed ID: 26433051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.