These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29888332)

  • 1. Practical water production from desert air.
    Fathieh F; Kalmutzki MJ; Kapustin EA; Waller PJ; Yang J; Yaghi OM
    Sci Adv; 2018 Jun; 4(6):eaat3198. PubMed ID: 29888332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption-based atmospheric water harvesting device for arid climates.
    Kim H; Rao SR; Kapustin EA; Zhao L; Yang S; Yaghi OM; Wang EN
    Nat Commun; 2018 Mar; 9(1):1191. PubMed ID: 29568033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water harvesting from air with metal-organic frameworks powered by natural sunlight.
    Kim H; Yang S; Rao SR; Narayanan S; Kapustin EA; Furukawa H; Umans AS; Yaghi OM; Wang EN
    Science; 2017 Apr; 356(6336):430-434. PubMed ID: 28408720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air.
    Zheng Z; Nguyen HL; Hanikel N; Li KK; Zhou Z; Ma T; Yaghi OM
    Nat Protoc; 2023 Jan; 18(1):136-156. PubMed ID: 36289405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmentally adaptive MOF-based device enables continuous self-optimizing atmospheric water harvesting.
    Almassad HA; Abaza RI; Siwwan L; Al-Maythalony B; Cordova KE
    Nat Commun; 2022 Aug; 13(1):4873. PubMed ID: 35986024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-Organic Frameworks for Water Harvesting from Air, Anywhere, Anytime.
    Xu W; Yaghi OM
    ACS Cent Sci; 2020 Aug; 6(8):1348-1354. PubMed ID: 32875075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Solar-Driven Water Harvesting from Arid Air with Metal-Organic Frameworks Modified by Hygroscopic Salt.
    Xu J; Li T; Chao J; Wu S; Yan T; Li W; Cao B; Wang R
    Angew Chem Int Ed Engl; 2020 Mar; 59(13):5202-5210. PubMed ID: 31943677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An overview of atmospheric water harvesting methods, the inevitable path of the future in water supply.
    Ahrestani Z; Sadeghzadeh S; Motejadded Emrooz HB
    RSC Adv; 2023 Mar; 13(15):10273-10307. PubMed ID: 37034449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Cycling and Exceptional Yield in a Metal-Organic Framework Water Harvester.
    Hanikel N; Prévot MS; Fathieh F; Kapustin EA; Lyu H; Wang H; Diercks NJ; Glover TG; Yaghi OM
    ACS Cent Sci; 2019 Oct; 5(10):1699-1706. PubMed ID: 31660438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response to Comment on "Water harvesting from air with metal-organic frameworks powered by natural sunlight".
    Kim H; Rao SR; Kapustin EA; Narayanan S; Yang S; Furukawa H; Umans AS; Yaghi OM; Wang EN
    Science; 2017 Nov; 358(6366):. PubMed ID: 29170205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible role of pectin-containing mucilage and dew in repairing embryo DNA of seeds adapted to desert conditions.
    Huang Z; Boubriak I; Osborne DJ; Dong M; Gutterman Y
    Ann Bot; 2008 Jan; 101(2):277-83. PubMed ID: 17495979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comment on "Water harvesting from air with metal-organic frameworks powered by natural sunlight".
    Meunier F
    Science; 2017 Nov; 358(6366):. PubMed ID: 29170204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Efficient Clean Water Production from Contaminated Air with a Wide Humidity Range.
    Yao H; Zhang P; Huang Y; Cheng H; Li C; Qu L
    Adv Mater; 2020 Feb; 32(6):e1905875. PubMed ID: 31856369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of dew in Negev Desert plants.
    Hill AJ; Dawson TE; Shelef O; Rachmilevitch S
    Oecologia; 2015 Jun; 178(2):317-27. PubMed ID: 25783489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Record Atmospheric Fresh Water Capture and Heat Transfer with a Material Operating at the Water Uptake Reversibility Limit.
    Rieth AJ; Yang S; Wang EN; Dincă M
    ACS Cent Sci; 2017 Jun; 3(6):668-672. PubMed ID: 28691080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive radiative cooling below ambient air temperature under direct sunlight.
    Raman AP; Anoma MA; Zhu L; Rephaeli E; Fan S
    Nature; 2014 Nov; 515(7528):540-4. PubMed ID: 25428501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterned Polymer Coatings Increase the Efficiency of Dew Harvesting.
    Al-Khayat O; Hong JK; Beck DM; Minett AI; Neto C
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13676-13684. PubMed ID: 28224792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential Foraging Decisions by a Desert Ungulate to Balance Water and Nutrient Intake in a Water-Stressed Environment.
    Gedir JV; Cain JW; Krausman PR; Allen JD; Duff GC; Morgart JR
    PLoS One; 2016; 11(2):e0148795. PubMed ID: 26894504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Hydrogel with High Water Vapor Harvesting Capacity for Deployable Solar-Driven Atmospheric Water Generator.
    Li R; Shi Y; Alsaedi M; Wu M; Shi L; Wang P
    Environ Sci Technol; 2018 Oct; 52(19):11367-11377. PubMed ID: 30192516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational Design of MOF-Based Hybrid Nanomaterials for Directly Harvesting Electric Energy from Water Evaporation.
    Ma Q; He Q; Yin P; Cheng H; Cui X; Yun Q; Zhang H
    Adv Mater; 2020 Sep; 32(37):e2003720. PubMed ID: 32761676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.