These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 29888388)
1. An investigation of inactivation mechanisms of Bacillus amyloliquefaciens spores in non-thermal plasma of ambient air. Huang Y; Ye XP; Doona CJ; Feeherry FE; Radosevich M; Wang S J Sci Food Agric; 2019 Jan; 99(1):368-378. PubMed ID: 29888388 [TBL] [Abstract][Full Text] [Related]
2. Bacteria, mould and yeast spore inactivation studies by scanning electron microscope observations. Rozali SNM; Milani EA; Deed RC; Silva FVM Int J Food Microbiol; 2017 Dec; 263():17-25. PubMed ID: 29024903 [TBL] [Abstract][Full Text] [Related]
3. Use of Raman Spectroscopy and Phase-Contrast Microscopy To Characterize Cold Atmospheric Plasma Inactivation of Individual Bacterial Spores. Wang S; Doona CJ; Setlow P; Li YQ Appl Environ Microbiol; 2016 Oct; 82(19):5775-84. PubMed ID: 27422840 [TBL] [Abstract][Full Text] [Related]
4. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores. van Bokhorst-van de Veen H; Xie H; Esveld E; Abee T; Mastwijk H; Nierop Groot M Food Microbiol; 2015 Feb; 45(Pt A):26-33. PubMed ID: 25481059 [TBL] [Abstract][Full Text] [Related]
5. Comparison of fungicidal properties of non-thermal plasma produced by corona discharge and dielectric barrier discharge. Julák J; Soušková H; Scholtz V; Kvasničková E; Savická D; Kříha V Folia Microbiol (Praha); 2018 Jan; 63(1):63-68. PubMed ID: 28623536 [TBL] [Abstract][Full Text] [Related]
6. Characterization of Bacillus subtilis spore inactivation in low-pressure, low-temperature gas plasma sterilization processes. Roth S; Feichtinger J; Hertel C J Appl Microbiol; 2010 Feb; 108(2):521-31. PubMed ID: 19659696 [TBL] [Abstract][Full Text] [Related]
7. Determination of spore inactivation during thermal and pressure-assisted thermal processing using FT-IR spectroscopy. Subramanian A; Ahn J; Balasubramaniam VM; Rodriguez-Saona L J Agric Food Chem; 2006 Dec; 54(26):10300-6. PubMed ID: 17177574 [TBL] [Abstract][Full Text] [Related]
8. Bacterial spore inactivation induced by cold plasma. Liao X; Muhammad AI; Chen S; Hu Y; Ye X; Liu D; Ding T Crit Rev Food Sci Nutr; 2019; 59(16):2562-2572. PubMed ID: 29621402 [TBL] [Abstract][Full Text] [Related]
9. Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package. Patil S; Moiseev T; Misra NN; Cullen PJ; Mosnier JP; Keener KM; Bourke P J Hosp Infect; 2014 Nov; 88(3):162-9. PubMed ID: 25308932 [TBL] [Abstract][Full Text] [Related]
10. High voltage atmospheric cold plasma treatment inactivates Aspergillus flavus spores and deoxynivalenol toxin. Ott LC; Appleton HJ; Shi H; Keener K; Mellata M Food Microbiol; 2021 May; 95():103669. PubMed ID: 33397632 [TBL] [Abstract][Full Text] [Related]
11. Monitoring biochemical changes in bacterial spore during thermal and pressure-assisted thermal processing using FT-IR spectroscopy. Subramanian A; Ahn J; Balasubramaniam VM; Rodriguez-Saona L J Agric Food Chem; 2007 Oct; 55(22):9311-7. PubMed ID: 17907780 [TBL] [Abstract][Full Text] [Related]
12. Physiological responses of Bacillus amyloliquefaciens spores to high pressure. Ahn J; Balasubramaniam VM J Microbiol Biotechnol; 2007 Mar; 17(3):524-9. PubMed ID: 18050959 [TBL] [Abstract][Full Text] [Related]
13. Carvacrol suppresses high pressure high temperature inactivation of Bacillus cereus spores. Luu-Thi H; Corthouts J; Passaris I; Grauwet T; Aertsen A; Hendrickx M; Michiels CW Int J Food Microbiol; 2015 Mar; 197():45-52. PubMed ID: 25560915 [TBL] [Abstract][Full Text] [Related]
14. [Inactivation of bacterial spores using low-temperature plasma]. Shi XM; Zhang GJ; Yuan YK; Ma Y; Xu GM; Gu N Nan Fang Yi Ke Da Xue Xue Bao; 2009 Oct; 29(10):2033-6. PubMed ID: 19861259 [TBL] [Abstract][Full Text] [Related]
15. Low-energy short-term cold atmospheric plasma: Controlling the inactivation efficacy of bacterial spores in powders. Pina-Perez MC; Martinet D; Palacios-Gorba C; Ellert C; Beyrer M Food Res Int; 2020 Apr; 130():108921. PubMed ID: 32156369 [TBL] [Abstract][Full Text] [Related]
17. The impact of high pressure and temperature on bacterial spores: inactivation mechanisms of Bacillus subtilis above 500 MPa. Reineke K; Mathys A; Knorr D J Food Sci; 2011 Apr; 76(3):M189-97. PubMed ID: 21535843 [TBL] [Abstract][Full Text] [Related]
18. Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk. Dong P; Georget ES; Aganovic K; Heinz V; Mathys A Front Microbiol; 2015; 6():712. PubMed ID: 26236296 [TBL] [Abstract][Full Text] [Related]
19. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host. Panngom K; Lee SH; Park DH; Sim GB; Kim YH; Uhm HS; Park G; Choi EH PLoS One; 2014; 9(6):e99300. PubMed ID: 24911947 [TBL] [Abstract][Full Text] [Related]
20. Inactivation of bacterial and fungal spores by UV irradiation and gaseous iodine treatment applied to air handling filters. Nakpan W; Yermakov M; Indugula R; Reponen T; Grinshpun SA Sci Total Environ; 2019 Jun; 671():59-65. PubMed ID: 30927728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]