BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 29888434)

  • 1. Targeting tryptophan availability to tumors: the answer to immune escape?
    Badawy AA
    Immunol Cell Biol; 2018 Nov; 96(10):1026-1034. PubMed ID: 29888434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan metabolism and disposition in cancer biology and immunotherapy.
    Badawy AA
    Biosci Rep; 2022 Nov; 42(11):. PubMed ID: 36286592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan: A Rheostat of Cancer Immune Escape Mediated by Immunosuppressive Enzymes IDO1 and TDO.
    Kim M; Tomek P
    Front Immunol; 2021; 12():636081. PubMed ID: 33708223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tryptophan availability for kynurenine pathway metabolism across the life span: Control mechanisms and focus on aging, exercise, diet and nutritional supplements.
    Badawy AA
    Neuropharmacology; 2017 Jan; 112(Pt B):248-263. PubMed ID: 26617070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of the Kynurenine Pathway in Human Malignancies Can Be Suppressed by the Cyclin-Dependent Kinase Inhibitor Dinaciclib.
    Riess C; Schneider B; Kehnscherper H; Gesche J; Irmscher N; Shokraie F; Classen CF; Wirthgen E; Domanska G; Zimpfer A; Strüder D; Junghanss C; Maletzki C
    Front Immunol; 2020; 11():55. PubMed ID: 32117235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of indoleamine-2,3-dioxygenase 1, tryptophan-2,3-dioxygenase, and Ido1/Tdo2 knockout mice.
    Aslamkhan AG; Xu Q; Loughlin A; Vu H; Pacchione S; Bhatt B; Garfinkel I; Styring TG; LaFranco-Scheuch L; Pearson K; Reynolds S; Li N; Zhou H; Miller JR; Solban N; Bass A; Glaab WE
    Toxicol Appl Pharmacol; 2020 Nov; 406():115216. PubMed ID: 32871117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential of targeting indoleamine 2,3-dioxygenase for cancer treatment.
    Gostner JM; Becker K; Überall F; Fuchs D
    Expert Opin Ther Targets; 2015 May; 19(5):605-15. PubMed ID: 25684107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 4,5-Disubstituted 1,2,3-triazoles: Effective Inhibition of Indoleamine 2,3-Dioxygenase 1 Enzyme Regulates T cell Activity and Mitigates Tumor Growth.
    Panda S; Pradhan N; Chatterjee S; Morla S; Saha A; Roy A; Kumar S; Bhattacharyya A; Manna D
    Sci Rep; 2019 Dec; 9(1):18455. PubMed ID: 31804586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibiting IDO pathways to treat cancer: lessons from the ECHO-301 trial and beyond.
    Muller AJ; Manfredi MG; Zakharia Y; Prendergast GC
    Semin Immunopathol; 2019 Jan; 41(1):41-48. PubMed ID: 30203227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The end of the road for the tryptophan depletion concept in pregnancy and infection.
    Badawy AA; Namboodiri AM; Moffett JR
    Clin Sci (Lond); 2016 Aug; 130(15):1327-33. PubMed ID: 27358028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting Tryptophan Catabolism in Cancer Immunotherapy Era: Challenges and Perspectives.
    Peyraud F; Guegan JP; Bodet D; Cousin S; Bessede A; Italiano A
    Front Immunol; 2022; 13():807271. PubMed ID: 35173722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Tryptophan Catabolism in Ovarian Cancer to Attenuate Macrophage Infiltration and PD-L1 Expression.
    Crump LS; Floyd JL; Kuo LW; Post MD; Bickerdike M; O'Neill K; Sompel K; Jordan KR; Corr BR; Marjon N; Woodruff ER; Richer JK; Bitler BG
    Cancer Res Commun; 2024 Mar; 4(3):822-833. PubMed ID: 38451784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indoleamine 2,3-Dioxygenase 1: A Promising Therapeutic Target in Malignant Tumor.
    Song X; Si Q; Qi R; Liu W; Li M; Guo M; Wei L; Yao Z
    Front Immunol; 2021; 12():800630. PubMed ID: 35003126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tryptophan metabolism, disposition and utilization in pregnancy.
    Badawy AA
    Biosci Rep; 2015 Sep; 35(5):. PubMed ID: 26381576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The therapeutic potential of targeting tryptophan catabolism in cancer.
    Opitz CA; Somarribas Patterson LF; Mohapatra SR; Dewi DL; Sadik A; Platten M; Trump S
    Br J Cancer; 2020 Jan; 122(1):30-44. PubMed ID: 31819194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypothesis: Metabolic targeting of 5-aminolevulinate synthase by tryptophan and inhibitors of heme utilisation by tryptophan 2,3-dioxygenase as potential therapies of acute hepatic porphyrias.
    Badawy AA
    Med Hypotheses; 2019 Oct; 131():109314. PubMed ID: 31443750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Tryptophan-Dioxygenase Activity Increases the Antitumor Efficacy of Immune Checkpoint Inhibitors.
    Schramme F; Crosignani S; Frederix K; Hoffmann D; Pilotte L; Stroobant V; Preillon J; Driessens G; Van den Eynde BJ
    Cancer Immunol Res; 2020 Jan; 8(1):32-45. PubMed ID: 31806638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immuno-Metabolic Modulation of Liver Oncogenesis by the Tryptophan Metabolism.
    Trézéguet V; Fatrouni H; Merched AJ
    Cells; 2021 Dec; 10(12):. PubMed ID: 34943977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Pathways: Targeting IDO1 and Other Tryptophan Dioxygenases for Cancer Immunotherapy.
    Zhai L; Spranger S; Binder DC; Gritsina G; Lauing KL; Giles FJ; Wainwright DA
    Clin Cancer Res; 2015 Dec; 21(24):5427-33. PubMed ID: 26519060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting the IDO1/TDO2-KYN-AhR Pathway for Cancer Immunotherapy - Challenges and Opportunities.
    Cheong JE; Sun L
    Trends Pharmacol Sci; 2018 Mar; 39(3):307-325. PubMed ID: 29254698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.