These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29889051)

  • 1. Biophysical basis of the linear electrical receptive fields of retinal ganglion cells.
    Esler TB; Maturana MI; Kerr RR; Grayden DB; Burkitt AN; Meffin H
    J Neural Eng; 2018 Oct; 15(5):055001. PubMed ID: 29889051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical receptive fields of retinal ganglion cells: Influence of presynaptic neurons.
    Maturana MI; Apollo NV; Garrett DJ; Kameneva T; Cloherty SL; Grayden DB; Burkitt AN; Ibbotson MR; Meffin H
    PLoS Comput Biol; 2018 Feb; 14(2):e1005997. PubMed ID: 29432411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sites of neuronal excitation by epiretinal electrical stimulation.
    Schiefer MA; Grill WM
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):5-13. PubMed ID: 16562626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational model of electrical stimulation of the retinal ganglion cell.
    Greenberg RJ; Velte TJ; Humayun MS; Scarlatis GN; de Juan E
    IEEE Trans Biomed Eng; 1999 May; 46(5):505-14. PubMed ID: 10230129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina.
    Maturana MI; Apollo NV; Hadjinicolaou AE; Garrett DJ; Cloherty SL; Kameneva T; Grayden DB; Ibbotson MR; Meffin H
    PLoS Comput Biol; 2016 Apr; 12(4):e1004849. PubMed ID: 27035143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inference of Electrical Stimulation Sensitivity from Recorded Activity of Primate Retinal Ganglion Cells.
    Madugula SS; Vilkhu R; Shah NP; Grosberg LE; Kling A; Gogliettino AR; Nguyen H; Hottowy P; Sher A; Litke AM; Chichilnisky EJ
    J Neurosci; 2023 Jun; 43(26):4808-4820. PubMed ID: 37268418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially patterned electrical stimulation to enhance resolution of retinal prostheses.
    Jepson LH; Hottowy P; Mathieson K; Gunning DE; DÄ…browski W; Litke AM; Chichilnisky EJ
    J Neurosci; 2014 Apr; 34(14):4871-81. PubMed ID: 24695706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of cortical responses to simultaneous electrical stimulation of the retina.
    Halupka KJ; Shivdasani MN; Cloherty SL; Grayden DB; Wong YT; Burkitt AN; Meffin H
    J Neural Eng; 2017 Feb; 14(1):016006. PubMed ID: 27900949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear spatial integration in the receptive field surround of retinal ganglion cells.
    Takeshita D; Gollisch T
    J Neurosci; 2014 May; 34(22):7548-61. PubMed ID: 24872559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the sodium channel band on retinal ganglion cell excitation during electric stimulation--a modeling study.
    Werginz P; Fried SI; Rattay F
    Neuroscience; 2014 Apr; 266():162-77. PubMed ID: 24560986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal ganglion cells: mechanisms underlying depolarization block and differential responses to high frequency electrical stimulation of ON and OFF cells.
    Kameneva T; Maturana MI; Hadjinicolaou AE; Cloherty SL; Ibbotson MR; Grayden DB; Burkitt AN; Meffin H
    J Neural Eng; 2016 Feb; 13(1):016017. PubMed ID: 26735572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of electrical stimulation of a retinal cell population using a multi-electrode array.
    Al Abed A; Lovell NH; Suaning G; Dokos S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2287-90. PubMed ID: 26736749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for the receptive field of retinal ganglion cells.
    Cho MW; Choi MY
    Neural Netw; 2014 Jan; 49():51-8. PubMed ID: 24129224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Action potentials in retinal ganglion cells are initiated at the site of maximal curvature of the extracellular potential.
    Eickenscheidt M; Zeck G
    J Neural Eng; 2014 Jun; 11(3):036006. PubMed ID: 24762943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation.
    Fried SI; Hsueh HA; Werblin FS
    J Neurophysiol; 2006 Feb; 95(2):970-8. PubMed ID: 16236780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous recording of mouse retinal ganglion cells during epiretinal or subretinal stimulation.
    Sim SL; Szalewski RJ; Johnson LJ; Akah LE; Shoemaker LE; Thoreson WB; Margalit E
    Vision Res; 2014 Aug; 101():41-50. PubMed ID: 24863584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of retinal ganglion cells following epiretinal electrical stimulation with hexagonally arranged bipolar electrodes.
    Abramian M; Lovell NH; Morley JW; Suaning GJ; Dokos S
    J Neural Eng; 2011 Jun; 8(3):035004. PubMed ID: 21593545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferential modulation of individual retinal ganglion cells by electrical stimulation.
    Yunzab M; Soto-Breceda A; Maturana M; Kirkby S; Slattery M; Newgreen A; Meffin H; Kameneva T; Burkitt AN; Ibbotson M; Tong W
    J Neural Eng; 2022 Aug; 19(4):. PubMed ID: 35917811
    [No Abstract]   [Full Text] [Related]  

  • 19. Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays.
    Sekirnjak C; Hottowy P; Sher A; Dabrowski W; Litke AM; Chichilnisky EJ
    J Neurophysiol; 2006 Jun; 95(6):3311-27. PubMed ID: 16436479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of different three-dimensional electrodes on epiretinal electrical stimulation by modeling analysis.
    Cao X; Sui X; Lyu Q; Li L; Chai X
    J Neuroeng Rehabil; 2015 Aug; 12():73. PubMed ID: 26311232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.