These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29889328)

  • 1. What Can We Learn from Solid State NMR on the Electrode-Electrolyte Interface?
    Haber S; Leskes M
    Adv Mater; 2018 Oct; 30(41):e1706496. PubMed ID: 29889328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface.
    Yu C; Ganapathy S; Eck ERHV; Wang H; Basak S; Li Z; Wagemaker M
    Nat Commun; 2017 Oct; 8(1):1086. PubMed ID: 29057868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-State NMR and MRI Spectroscopy for Li/Na Batteries: Materials, Interface, and In Situ Characterization.
    Liu X; Liang Z; Xiang Y; Lin M; Li Q; Liu Z; Zhong G; Fu R; Yang Y
    Adv Mater; 2021 Dec; 33(50):e2005878. PubMed ID: 33788341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ STEM-EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries.
    Wang Z; Santhanagopalan D; Zhang W; Wang F; Xin HL; He K; Li J; Dudney N; Meng YS
    Nano Lett; 2016 Jun; 16(6):3760-7. PubMed ID: 27140196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equilibrium lithium-ion transport between nanocrystalline lithium-inserted anatase TiO2 and the electrolyte.
    Ganapathy S; van Eck ER; Kentgens AP; Mulder FM; Wagemaker M
    Chemistry; 2011 Dec; 17(52):14811-6. PubMed ID: 22120842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes.
    Wei S; Choudhury S; Tu Z; Zhang K; Archer LA
    Acc Chem Res; 2018 Jan; 51(1):80-88. PubMed ID: 29227617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(vinylene carbonate)-Based Composite Polymer Electrolyte with Enhanced Interfacial Stability To Realize High-Performance Room-Temperature Solid-State Sodium Batteries.
    Chen S; Che H; Feng F; Liao J; Wang H; Yin Y; Ma ZF
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43056-43065. PubMed ID: 31660726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook.
    Pervez SA; Cambaz MA; Thangadurai V; Fichtner M
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22029-22050. PubMed ID: 31144798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical Thin Layers in Nanostructures for Energy Storage.
    Noked M; Liu C; Hu J; Gregorczyk K; Rubloff GW; Lee SB
    Acc Chem Res; 2016 Oct; 49(10):2336-2346. PubMed ID: 27636834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the Lifetime of Battery Cells Based on Solid-State Li
    Schlenker R; Stępień D; Koch P; Hupfer T; Indris S; Roling B; Miß V; Fuchs A; Wilhelmi M; Ehrenberg H
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):20012-20025. PubMed ID: 32251596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries.
    Wang L; Xie R; Chen B; Yu X; Ma J; Li C; Hu Z; Sun X; Xu C; Dong S; Chan TS; Luo J; Cui G; Chen L
    Nat Commun; 2020 Nov; 11(1):5889. PubMed ID: 33208730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer Electrolyte Glue: A Universal Interfacial Modification Strategy for All-Solid-State Li Batteries.
    Dong D; Zhou B; Sun Y; Zhang H; Zhong G; Dong Q; Fu F; Qian H; Lin Z; Lu D; Shen Y; Wu J; Chen L; Chen H
    Nano Lett; 2019 Apr; 19(4):2343-2349. PubMed ID: 30856336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ analytical techniques for battery interface analysis.
    Tripathi AM; Su WN; Hwang BJ
    Chem Soc Rev; 2018 Feb; 47(3):736-851. PubMed ID: 29308803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and Li
    Boyer MJ; Vilčiauskas L; Hwang GS
    Phys Chem Chem Phys; 2016 Oct; 18(40):27868-27876. PubMed ID: 27711674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility.
    Yu S; Mertens A; Tempel H; Schierholz R; Kungl H; Eichel RA
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22264-22277. PubMed ID: 29894641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Nuclear Polarization in battery materials.
    Haber S; Leskes M
    Solid State Nucl Magn Reson; 2022 Feb; 117():101763. PubMed ID: 34890977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life.
    Yao X; Liu D; Wang C; Long P; Peng G; Hu YS; Li H; Chen L; Xu X
    Nano Lett; 2016 Nov; 16(11):7148-7154. PubMed ID: 27766883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries.
    Zhang W; Weber DA; Weigand H; Arlt T; Manke I; Schröder D; Koerver R; Leichtweiss T; Hartmann P; Zeier WG; Janek J
    ACS Appl Mater Interfaces; 2017 May; 9(21):17835-17845. PubMed ID: 28481084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.