These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

532 related articles for article (PubMed ID: 29889493)

  • 21. Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries.
    Lin F; Liu Y; Yu X; Cheng L; Singer A; Shpyrko OG; Xin HL; Tamura N; Tian C; Weng TC; Yang XQ; Meng YS; Nordlund D; Yang W; Doeff MM
    Chem Rev; 2017 Nov; 117(21):13123-13186. PubMed ID: 28960962
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atom probe analysis of electrode materials for Li-ion batteries: challenges and ways forward.
    Kim SH; Antonov S; Zhou X; Stephenson LT; Jung C; El-Zoka AA; Schreiber DK; Conroy M; Gault B
    J Mater Chem A Mater; 2022 Mar; 10(9):4926-4935. PubMed ID: 35341092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Properties and promises of nanosized insertion materials for Li-ion batteries.
    Wagemaker M; Mulder FM
    Acc Chem Res; 2013 May; 46(5):1206-15. PubMed ID: 22324286
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries.
    Liu H; Bugnet M; Tessaro MZ; Harris KJ; Dunham MJ; Jiang M; Goward GR; Botton GA
    Phys Chem Chem Phys; 2016 Oct; 18(42):29064-29075. PubMed ID: 27711529
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Image registration for in situ X-ray nano-imaging of a composite battery cathode with deformation.
    Su B; Qian G; Gao R; Tao F; Zhang L; Du G; Deng B; Pianetta P; Liu Y
    J Synchrotron Radiat; 2024 Mar; 31(Pt 2):328-335. PubMed ID: 38300132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research.
    Liu D; Shadike Z; Lin R; Qian K; Li H; Li K; Wang S; Yu Q; Liu M; Ganapathy S; Qin X; Yang QH; Wagemaker M; Kang F; Yang XQ; Li B
    Adv Mater; 2019 Jul; 31(28):e1806620. PubMed ID: 31099081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoscale mapping of lithium-ion diffusion in a cathode within an all-solid-state lithium-ion battery by advanced scanning probe microscopy techniques.
    Zhu J; Lu L; Zeng K
    ACS Nano; 2013 Feb; 7(2):1666-75. PubMed ID: 23336441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Role of Cations on the Performance of Lithium Ion Batteries: A Quantitative Analytical Approach.
    Nowak S; Winter M
    Acc Chem Res; 2018 Feb; 51(2):265-272. PubMed ID: 29381052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Equilibria and Rate Phenomena from Atomistic to Mesoscale: Simulation Studies of Magnetite.
    Lininger CN; Brady NW; West AC
    Acc Chem Res; 2018 Mar; 51(3):583-590. PubMed ID: 29498267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
    Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y
    Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms of Degradation and Strategies for the Stabilization of Cathode-Electrolyte Interfaces in Li-Ion Batteries.
    Cabana J; Kwon BJ; Hu L
    Acc Chem Res; 2018 Feb; 51(2):299-308. PubMed ID: 29384354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Morphological Evolution of High-Voltage Spinel LiNi(0.5)Mn(1.5)O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size.
    Liu H; Wang J; Zhang X; Zhou D; Qi X; Qiu B; Fang J; Kloepsch R; Schumacher G; Liu Z; Li J
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4661-75. PubMed ID: 26824793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoscale visualization of redox activity at lithium-ion battery cathodes.
    Takahashi Y; Kumatani A; Munakata H; Inomata H; Ito K; Ino K; Shiku H; Unwin PR; Korchev YE; Kanamura K; Matsue T
    Nat Commun; 2014 Nov; 5():5450. PubMed ID: 25399818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Internal potential mapping of charged solid-state-lithium ion batteries using in situ Kelvin probe force microscopy.
    Masuda H; Ishida N; Ogata Y; Ito D; Fujita D
    Nanoscale; 2017 Jan; 9(2):893-898. PubMed ID: 28000823
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoscale morphological and chemical changes of high voltage lithium-manganese rich NMC composite cathodes with cycling.
    Yang F; Liu Y; Martha SK; Wu Z; Andrews JC; Ice GE; Pianetta P; Nanda J
    Nano Lett; 2014 Aug; 14(8):4334-41. PubMed ID: 25054780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure.
    Borodin O; Ren X; Vatamanu J; von Wald Cresce A; Knap J; Xu K
    Acc Chem Res; 2017 Dec; 50(12):2886-2894. PubMed ID: 29164857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Boosting Reaction Homogeneity in High-Energy Lithium-Ion Battery Cathode Materials.
    Cha H; Kim J; Lee H; Kim N; Hwang J; Sung J; Yoon M; Kim K; Cho J
    Adv Mater; 2020 Oct; 32(39):e2003040. PubMed ID: 32820565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.