These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29889499)

  • 1. Ultrashort Carbon Nanotubes That Fluoresce Brightly in the Near-Infrared.
    Danné N; Kim M; Godin AG; Kwon H; Gao Z; Wu X; Hartmann NF; Doorn SK; Lounis B; Wang Y; Cognet L
    ACS Nano; 2018 Jun; 12(6):6059-6065. PubMed ID: 29889499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent Ultrashort Nanotubes from Defect-Induced Chemical Cutting.
    Li Y; Wu X; Kim M; Fortner J; Qu H; Wang Y
    Chem Mater; 2019 Jun; 31(12):4536-4544. PubMed ID: 32742079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoluminescence Dynamics Defined by Exciton Trapping Potential of Coupled Defect States in DNA-Functionalized Carbon Nanotubes.
    Zheng Y; Weight BM; Jones AC; Chandrasekaran V; Gifford BJ; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2021 Jan; 15(1):923-933. PubMed ID: 33395262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoluminescence Dynamics of Aryl sp(3) Defect States in Single-Walled Carbon Nanotubes.
    Hartmann NF; Velizhanin KA; Haroz EH; Kim M; Ma X; Wang Y; Htoon H; Doorn SK
    ACS Nano; 2016 Sep; 10(9):8355-65. PubMed ID: 27529740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast Exciton Trapping at
    Sykes ME; Kim M; Wu X; Wiederrecht GP; Peng L; Wang Y; Gosztola DJ; Ma X
    ACS Nano; 2019 Nov; 13(11):13264-13270. PubMed ID: 31661244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Channeling Excitons to Emissive Defect Sites in Carbon Nanotube Semiconductors beyond the Dilute Regime.
    Powell LR; Piao Y; Ng AL; Wang Y
    J Phys Chem Lett; 2018 Jun; 9(11):2803-2807. PubMed ID: 29746778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoswitchable single-walled carbon nanotubes for super-resolution microscopy in the near-infrared.
    Godin AG; Setaro A; Gandil M; Haag R; Adeli M; Reich S; Cognet L
    Sci Adv; 2019 Sep; 5(9):eaax1166. PubMed ID: 31799400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagative Sidewall Alkylcarboxylation that Induces Red-Shifted Near-IR Photoluminescence in Single-Walled Carbon Nanotubes.
    Zhang Y; Valley N; Brozena AH; Piao Y; Song X; Schatz GC; Wang Y
    J Phys Chem Lett; 2013 Mar; 4(5):826-30. PubMed ID: 26281939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photochemical Creation of Fluorescent Quantum Defects in Semiconducting Carbon Nanotube Hosts.
    Wu X; Kim M; Kwon H; Wang Y
    Angew Chem Int Ed Engl; 2018 Jan; 57(3):648-653. PubMed ID: 29215774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon Nanotube Photoluminescence Modulation by Local Chemical and Supramolecular Chemical Functionalization.
    Shiraki T; Miyauchi Y; Matsuda K; Nakashima N
    Acc Chem Res; 2020 Sep; 53(9):1846-1859. PubMed ID: 32791829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing exciton localization in single-walled carbon nanotubes using high-resolution near-field microscopy.
    Georgi C; Green AA; Hersam MC; Hartschuh A
    ACS Nano; 2010 Oct; 4(10):5914-20. PubMed ID: 20857945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice.
    Welsher K; Liu Z; Sherlock SP; Robinson JT; Chen Z; Daranciang D; Dai H
    Nat Nanotechnol; 2009 Nov; 4(11):773-80. PubMed ID: 19893526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitons in Single-Walled Carbon Nanotubes and Their Dynamics.
    Amori AR; Hou Z; Krauss TD
    Annu Rev Phys Chem; 2018 Apr; 69():81-99. PubMed ID: 29401037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecularly Tunable Fluorescent Quantum Defects.
    Kwon H; Furmanchuk A; Kim M; Meany B; Guo Y; Schatz GC; Wang Y
    J Am Chem Soc; 2016 Jun; 138(21):6878-85. PubMed ID: 27159413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes.
    Kiowski O; Arnold K; Lebedkin S; Hennrich F; Kappes MM
    Phys Rev Lett; 2007 Dec; 99(23):237402. PubMed ID: 18233410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superlocalization of Excitons in Carbon Nanotubes at Cryogenic Temperature.
    Raynaud C; Claude T; Borel A; Amara MR; Graf A; Zaumseil J; Lauret JS; Chassagneux Y; Voisin C
    Nano Lett; 2019 Oct; 19(10):7210-7216. PubMed ID: 31487461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Light Emission from Coupled Defect States in DNA-Functionalized Carbon Nanotubes.
    Zheng Y; Kim Y; Jones AC; Olinger G; Bittner ER; Bachilo SM; Doorn SK; Weisman RB; Piryatinski A; Htoon H
    ACS Nano; 2021 Jun; 15(6):10406-10414. PubMed ID: 34061507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Azide modification forming luminescent sp
    Hayashi K; Niidome Y; Shiga T; Yu B; Nakagawa Y; Janas D; Fujigaya T; Shiraki T
    Chem Commun (Camb); 2022 Oct; 58(81):11422-11425. PubMed ID: 36134499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization.
    Ju SY; Kopcha WP; Papadimitrakopoulos F
    Science; 2009 Mar; 323(5919):1319-23. PubMed ID: 19265015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-Pot, Large-Scale Synthesis of Organic Color Center-Tailored Semiconducting Carbon Nanotubes.
    Luo HB; Wang P; Wu X; Qu H; Ren X; Wang Y
    ACS Nano; 2019 Jul; 13(7):8417-8424. PubMed ID: 31268668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.