These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 29889528)
1. Solvation Layer of Antifreeze Proteins Analyzed with a Markov State Model. Wellig S; Hamm P J Phys Chem B; 2018 Dec; 122(49):11014-11022. PubMed ID: 29889528 [TBL] [Abstract][Full Text] [Related]
2. Unusual structural properties of water within the hydration shell of hyperactive antifreeze protein. Kuffel A; Czapiewski D; Zielkiewicz J J Chem Phys; 2014 Aug; 141(5):055103. PubMed ID: 25106616 [TBL] [Abstract][Full Text] [Related]
3. Hydration Shell of Antifreeze Proteins: Unveiling the Role of Non-Ice-Binding Surfaces. Zanetti-Polzi L; Biswas AD; Del Galdo S; Barone V; Daidone I J Phys Chem B; 2019 Aug; 123(30):6474-6480. PubMed ID: 31280567 [TBL] [Abstract][Full Text] [Related]
4. Preordering of water is not needed for ice recognition by hyperactive antifreeze proteins. Hudait A; Moberg DR; Qiu Y; Odendahl N; Paesani F; Molinero V Proc Natl Acad Sci U S A; 2018 Aug; 115(33):8266-8271. PubMed ID: 29987018 [TBL] [Abstract][Full Text] [Related]
5. Molecular structure of a hyperactive antifreeze protein adsorbed to ice. Meister K; Moll CJ; Chakraborty S; Jana B; DeVries AL; Ramløv H; Bakker HJ J Chem Phys; 2019 Apr; 150(13):131101. PubMed ID: 30954062 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms of antifreeze proteins investigated via the site-directed spin labeling technique. Flores A; Quon JC; Perez AF; Ba Y Eur Biophys J; 2018 Sep; 47(6):611-630. PubMed ID: 29487966 [TBL] [Abstract][Full Text] [Related]
7. The low-entropy hydration shell mediated ice-binding mechanism of antifreeze proteins. Guo S; Yang L; Hou C; Jiang S; Ma X; Shi L; Zheng B; Ye L; He X Int J Biol Macromol; 2024 Oct; 277(Pt 4):134562. PubMed ID: 39116982 [TBL] [Abstract][Full Text] [Related]
8. High Water Density at Non-Ice-Binding Surfaces Contributes to the Hyperactivity of Antifreeze Proteins. Biswas AD; Barone V; Daidone I J Phys Chem Lett; 2021 Sep; 12(36):8777-8783. PubMed ID: 34491750 [TBL] [Abstract][Full Text] [Related]
9. Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations. Nutt DR; Smith JC J Am Chem Soc; 2008 Oct; 130(39):13066-73. PubMed ID: 18774821 [TBL] [Abstract][Full Text] [Related]
10. Molecular dynamics study on the role of solvation water in the adsorption of hyperactive AFP to the ice surface. Grabowska J; Kuffel A; Zielkiewicz J Phys Chem Chem Phys; 2018 Oct; 20(39):25365-25376. PubMed ID: 30260360 [TBL] [Abstract][Full Text] [Related]
11. Molecular Factors of Ice Growth Inhibition for Hyperactive and Globular Antifreeze Proteins: Insights from Molecular Dynamics Simulation. Pal P; Aich R; Chakraborty S; Jana B Langmuir; 2022 Dec; 38(49):15132-15144. PubMed ID: 36450094 [TBL] [Abstract][Full Text] [Related]
12. Local water dynamics around antifreeze protein residues in the presence of osmolytes: the importance of hydroxyl and disaccharide groups. Krishnamoorthy AN; Holm C; Smiatek J J Phys Chem B; 2014 Oct; 118(40):11613-21. PubMed ID: 25207443 [TBL] [Abstract][Full Text] [Related]
13. Characterization of microbial antifreeze protein with intermediate activity suggests that a bound-water network is essential for hyperactivity. Khan NMU; Arai T; Tsuda S; Kondo H Sci Rep; 2021 Mar; 11(1):5971. PubMed ID: 33727595 [TBL] [Abstract][Full Text] [Related]
14. Effects of hydrophobic and hydrogen-bond interactions on the binding affinity of antifreeze proteins to specific ice planes. Lee H J Mol Graph Model; 2019 Mar; 87():48-55. PubMed ID: 30502671 [TBL] [Abstract][Full Text] [Related]
15. Role of the Solvation Water in Remote Interactions of Hyperactive Antifreeze Proteins with the Surface of Ice. Grabowska J; Kuffel A; Zielkiewicz J J Phys Chem B; 2019 Sep; 123(38):8010-8018. PubMed ID: 31513398 [TBL] [Abstract][Full Text] [Related]
16. Structures, dynamics, and hydrogen-bond interactions of antifreeze proteins in TIP4P/Ice water and their dependence on force fields. Lee H PLoS One; 2018; 13(6):e0198887. PubMed ID: 29879205 [TBL] [Abstract][Full Text] [Related]
17. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations. Sun T; Gauthier SY; Campbell RL; Davies PL J Phys Chem B; 2015 Oct; 119(40):12808-15. PubMed ID: 26371748 [TBL] [Abstract][Full Text] [Related]
18. Antifreeze proteins at the ice/water interface: three calculated discriminating properties for orientation of type I proteins. Wierzbicki A; Dalal P; Cheatham TE; Knickelbein JE; Haymet AD; Madura JD Biophys J; 2007 Sep; 93(5):1442-51. PubMed ID: 17526572 [TBL] [Abstract][Full Text] [Related]
19. The remarkable hydration of the antifreeze protein Maxi: a computational study. Sharp KA J Chem Phys; 2014 Dec; 141(22):22D510. PubMed ID: 25494781 [TBL] [Abstract][Full Text] [Related]
20. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation. Halder S; Mukhopadhyay C J Biomol Struct Dyn; 2017 Dec; 35(16):3591-3604. PubMed ID: 27882844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]