These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29890026)

  • 1. Potential biological control of Erwinia tracheiphila by internal alimentary canal interactions in Acalymma vittatum with Pseudomonas fluorescens.
    Roberts DC; Fleischer SJ; Sakamoto JM; Rasgon JL
    J Appl Microbiol; 2018 Oct; 125(4):1137-1146. PubMed ID: 29890026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insect frass as a pathway for transmission of bacterial wilt of cucurbits.
    Mitchell RF; Hanks LM
    Environ Entomol; 2009 Apr; 38(2):395-403. PubMed ID: 19389288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Floral transmission of Erwinia tracheiphila by cucumber beetles in a wild Cucurbita pepo.
    Sasu MA; Seidl-Adams I; Wall K; Winsor JA; Stephenson AG
    Environ Entomol; 2010 Feb; 39(1):140-8. PubMed ID: 20146850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of short- and long-term association between a bacterial plant pathogen and its arthropod vector.
    Shapiro LR; Seidl-Adams I; De Moraes CM; Stephenson AG; Mescher MC
    Sci Rep; 2014 Feb; 4():4155. PubMed ID: 24561664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of
    Fu B; Zhai Y; Gleason M; Beattie GA
    Phytopathology; 2021 Dec; 111(12):2185-2194. PubMed ID: 34033507
    [No Abstract]   [Full Text] [Related]  

  • 6. Disease interactions in a shared host plant: effects of pre-existing viral infection on cucurbit plant defense responses and resistance to bacterial wilt disease.
    Shapiro LR; Salvaudon L; Mauck KE; Pulido H; De Moraes CM; Stephenson AG; Mescher MC
    PLoS One; 2013; 8(10):e77393. PubMed ID: 24155951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epiphytic Survival of Erwinia tracheiphila on Muskmelon (Cucumis melo L.).
    Rojas ES; Gleason ML
    Plant Dis; 2012 Jan; 96(1):62-66. PubMed ID: 30731844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using trap crops for control of Acalymma vittatum (Coleoptera: Chrysomelidae) reduces insecticide use in butternut squash.
    Cavanagh A; Hazzard R; Adler LS; Boucher J
    J Econ Entomol; 2009 Jun; 102(3):1101-7. PubMed ID: 19610425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic and virulence variability among Erwinia tracheiphila strains recovered from different cucurbit hosts.
    Rojas ES; Dixon PM; Batzer JC; Gleason ML
    Phytopathology; 2013 Sep; 103(9):900-5. PubMed ID: 23927426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Introduced Crop Plant Is Driving Diversification of the Virulent Bacterial Pathogen Erwinia tracheiphila.
    Shapiro LR; Paulson JN; Arnold BJ; Scully ED; Zhaxybayeva O; Pierce NE; Rocha J; Klepac-Ceraj V; Holton K; Kolter R
    mBio; 2018 Oct; 9(5):. PubMed ID: 30279283
    [No Abstract]   [Full Text] [Related]  

  • 11. Modified inoculation and disease assessment methods reveal host specificity in Erwinia tracheiphila-Cucurbitaceae interactions.
    Nazareno ES; Dumenyo CK
    Microb Pathog; 2015 Dec; 89():184-7. PubMed ID: 26522078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery and Characterization of Low-Molecular Weight Inhibitors of
    Vrisman CM; Deblais L; Helmy YA; Johnson R; Rajashekara G; Miller SA
    Phytopathology; 2020 May; 110(5):989-998. PubMed ID: 31971868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens.
    Couillerot O; Prigent-Combaret C; Caballero-Mellado J; Moënne-Loccoz Y
    Lett Appl Microbiol; 2009 May; 48(5):505-12. PubMed ID: 19291210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective inhibition of Erwinia amylovora by the herbicidally active germination-arrest factor (GAF) produced by Pseudomonas bacteria.
    Halgren A; Azevedo M; Mills D; Armstrong D; Thimmaiah M; McPhail K; Banowetz G
    J Appl Microbiol; 2011 Oct; 111(4):949-59. PubMed ID: 21726360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological Control and Microbial Ecology Draft Genome Sequence Data of
    Fu B; Olawole O; Beattie GA
    Phytopathology; 2021 Apr; 111(4):765-768. PubMed ID: 33174822
    [No Abstract]   [Full Text] [Related]  

  • 16. The consensus sequence of ice nucleation proteins from Erwinia herbicola, Pseudomonas fluorescens and Pseudomonas syringae.
    Warren G; Corotto L
    Gene; 1989 Dec; 85(1):239-42. PubMed ID: 2515997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunological characterization of ice nucleation proteins from Pseudomonas syringae, Pseudomonas fluorescens, and Erwinia herbicola.
    Deininger CA; Mueller GM; Wolber PK
    J Bacteriol; 1988 Feb; 170(2):669-75. PubMed ID: 3123461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Herbaceous Weeds Are Not Ecologically Important Reservoirs of Erwinia tracheiphila.
    de Mackiewicz D; Gildow FE; Blua M; Fleischer SJ; Lukezic FL
    Plant Dis; 1998 May; 82(5):521-529. PubMed ID: 30856982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Horizontal Gene Acquisitions, Mobile Element Proliferation, and Genome Decay in the Host-Restricted Plant Pathogen Erwinia Tracheiphila.
    Shapiro LR; Scully ED; Straub TJ; Park J; Stephenson AG; Beattie GA; Gleason ML; Kolter R; Coelho MC; De Moraes CM; Mescher MC; Zhaxybayeva O
    Genome Biol Evol; 2016 Mar; 8(3):649-64. PubMed ID: 26992913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved deferred antagonism technique for detecting antibiosis.
    Klein JM; Stockwell VO; Minsavage GV; Vallad GE; Goss EM; Jones JB
    Lett Appl Microbiol; 2020 Oct; 71(4):330-336. PubMed ID: 32506499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.