BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 29890190)

  • 1. Dysregulation and restoration of homeostatic network plasticity in fragile X syndrome mice.
    Jewett KA; Lee KY; Eagleman DE; Soriano S; Tsai NP
    Neuropharmacology; 2018 Aug; 138():182-192. PubMed ID: 29890190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of fragile X protein FMRP impairs homeostatic synaptic downscaling through tumor suppressor p53 and ubiquitin E3 ligase Nedd4-2.
    Lee KY; Jewett KA; Chung HJ; Tsai NP
    Hum Mol Genet; 2018 Aug; 27(16):2805-2816. PubMed ID: 29771335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ER stress-induced modulation of neural activity and seizure susceptibility is impaired in a fragile X syndrome mouse model.
    Liu DC; Lee KY; Lizarazo S; Cook JK; Tsai NP
    Neurobiol Dis; 2021 Oct; 158():105450. PubMed ID: 34303799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The tumor suppressor p53 guides GluA1 homeostasis through Nedd4-2 during chronic elevation of neuronal activity.
    Jewett KA; Zhu J; Tsai NP
    J Neurochem; 2015 Oct; 135(2):226-33. PubMed ID: 26250624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feedback modulation of neural network synchrony and seizure susceptibility by Mdm2-p53-Nedd4-2 signaling.
    Jewett KA; Christian CA; Bacos JT; Lee KY; Zhu J; Tsai NP
    Mol Brain; 2016 Mar; 9():32. PubMed ID: 27000207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mdm2 mediates FMRP- and Gp1 mGluR-dependent protein translation and neural network activity.
    Liu DC; Seimetz J; Lee KY; Kalsotra A; Chung HJ; Lu H; Tsai NP
    Hum Mol Genet; 2017 Oct; 26(20):3895-3908. PubMed ID: 29016848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homeostatic Intrinsic Plasticity Is Functionally Altered in Fmr1 KO Cortical Neurons.
    Bülow P; Murphy TJ; Bassell GJ; Wenner P
    Cell Rep; 2019 Feb; 26(6):1378-1388.e3. PubMed ID: 30726724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinoic Acid Receptor RARα-Dependent Synaptic Signaling Mediates Homeostatic Synaptic Plasticity at the Inhibitory Synapses of Mouse Visual Cortex.
    Zhong LR; Chen X; Park E; Südhof TC; Chen L
    J Neurosci; 2018 Dec; 38(49):10454-10466. PubMed ID: 30355624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fragile X mutation impairs homeostatic plasticity in human neurons by blocking synaptic retinoic acid signaling.
    Zhang Z; Marro SG; Zhang Y; Arendt KL; Patzke C; Zhou B; Fair T; Yang N; Südhof TC; Wernig M; Chen L
    Sci Transl Med; 2018 Aug; 10(452):. PubMed ID: 30068571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delayed in vitro development of Up states but normal network plasticity in Fragile X circuits.
    Motanis H; Buonomano D
    Eur J Neurosci; 2015 Sep; 42(6):2312-21. PubMed ID: 26138886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X Syndrome.
    Lovelace JW; Wen TH; Reinhard S; Hsu MS; Sidhu H; Ethell IM; Binder DK; Razak KA
    Neurobiol Dis; 2016 May; 89():126-35. PubMed ID: 26850918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MDM2 inhibition rescues neurogenic and cognitive deficits in a mouse model of fragile X syndrome.
    Li Y; Stockton ME; Bhuiyan I; Eisinger BE; Gao Y; Miller JL; Bhattacharyya A; Zhao X
    Sci Transl Med; 2016 Apr; 8(336):336ra61. PubMed ID: 27122614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fragile X-like behaviors and abnormal cortical dendritic spines in cytoplasmic FMR1-interacting protein 2-mutant mice.
    Han K; Chen H; Gennarino VA; Richman R; Lu HC; Zoghbi HY
    Hum Mol Genet; 2015 Apr; 24(7):1813-23. PubMed ID: 25432536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic Activation of Gp1 mGluRs Leads to Distinct Refinement of Neural Network Activity through Non-Canonical p53 and Akt Signaling.
    Liu DC; Soriano S; Yook Y; Lizarazo S; Eagleman DE; Tsai NP
    eNeuro; 2020; 7(2):. PubMed ID: 32161037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BDNF in fragile X syndrome.
    Castrén ML; Castrén E
    Neuropharmacology; 2014 Jan; 76 Pt C():729-36. PubMed ID: 23727436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disrupted inhibitory plasticity and homeostasis in Fragile X syndrome.
    Cea-Del Rio CA; Nunez-Parra A; Freedman SM; Kushner JK; Alexander AL; Restrepo D; Huntsman MM
    Neurobiol Dis; 2020 Aug; 142():104959. PubMed ID: 32512151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased surface expression of the δ subunit of the GABA
    Zhang N; Peng Z; Tong X; Lindemeyer AK; Cetina Y; Huang CS; Olsen RW; Otis TS; Houser CR
    Exp Neurol; 2017 Nov; 297():168-178. PubMed ID: 28822839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. microRNAs and Fragile X Syndrome.
    Lin SL
    Adv Exp Med Biol; 2015; 888():107-21. PubMed ID: 26663181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired GABAergic inhibition in the hippocampus of Fmr1 knockout mice.
    Sabanov V; Braat S; D'Andrea L; Willemsen R; Zeidler S; Rooms L; Bagni C; Kooy RF; Balschun D
    Neuropharmacology; 2017 Apr; 116():71-81. PubMed ID: 28012946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-Dependent Long-Term Potentiation Deficits in the Prefrontal Cortex of the Fmr1 Knockout Mouse Model of Fragile X Syndrome.
    Martin HGS; Lassalle O; Brown JT; Manzoni OJ
    Cereb Cortex; 2016 May; 26(5):2084-2092. PubMed ID: 25750254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.