BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29890438)

  • 1. Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis.
    Xu D; Chai M; Dong Z; Rahman MM; Yu X; Cai J
    Bioresour Technol; 2018 Oct; 265():139-145. PubMed ID: 29890438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General distributed activation energy model (G-DAEM) on co-pyrolysis kinetics of bagasse and sewage sludge.
    Lin Y; Tian Y; Xia Y; Fang S; Liao Y; Yu Z; Ma X
    Bioresour Technol; 2019 Feb; 273():545-555. PubMed ID: 30472354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrolysis kinetics of biomass wastes using isoconversional methods and the distributed activation energy model.
    Arenas CN; Navarro MV; Martínez JD
    Bioresour Technol; 2019 Sep; 288():121485. PubMed ID: 31136890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model.
    Chen T; Zhang J; Wu J
    Bioresour Technol; 2016 Jul; 211():502-8. PubMed ID: 27035484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Logistic distributed activation energy model--part 2: application to cellulose pyrolysis.
    Cai J; Yang S; Li T
    Bioresour Technol; 2011 Feb; 102(3):3642-4. PubMed ID: 21134741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a modified independent parallel reactions kinetic model and comparison with the distributed activation energy model for the pyrolysis of a wide variety of biomass fuels.
    Sfakiotakis S; Vamvuka D
    Bioresour Technol; 2015 Dec; 197():434-42. PubMed ID: 26356115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis.
    Chen Z; Hu M; Zhu X; Guo D; Liu S; Hu Z; Xiao B; Wang J; Laghari M
    Bioresour Technol; 2015 Sep; 192():441-50. PubMed ID: 26080101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrolysis kinetic and product analysis of different microalgal biomass by distributed activation energy model and pyrolysis-gas chromatography-mass spectrometry.
    Yang X; Zhang R; Fu J; Geng S; Cheng JJ; Sun Y
    Bioresour Technol; 2014 Jul; 163():335-42. PubMed ID: 24835746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic study of solid waste pyrolysis using distributed activation energy model.
    Bhavanam A; Sastry RC
    Bioresour Technol; 2015 Feb; 178():126-131. PubMed ID: 25455087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis.
    Mishra RK; Mohanty K
    Bioresour Technol; 2018 Mar; 251():63-74. PubMed ID: 29272770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative pyrolysis kinetics of various biomasses based on model-free and DAEM approaches improved with numerical optimization procedure.
    Radojević M; Janković B; Jovanović V; Stojiljković D; Manić N
    PLoS One; 2018; 13(10):e0206657. PubMed ID: 30379972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis.
    Cai J; Wu W; Liu R
    Bioresour Technol; 2013 Mar; 132():423-6. PubMed ID: 23280091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: comparison of N₂ and CO₂ atmosphere.
    Zhang J; Chen T; Wu J; Wu J
    Bioresour Technol; 2014 Aug; 166():87-95. PubMed ID: 24907567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-pyrolysis kinetics of sewage sludge and bagasse using multiple normal distributed activation energy model (M-DAEM).
    Lin Y; Chen Z; Dai M; Fang S; Liao Y; Yu Z; Ma X
    Bioresour Technol; 2018 Jul; 259():173-180. PubMed ID: 29550731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic study of biomass pellet pyrolysis by using distributed activation energy model and Coats Redfern methods and their comparison.
    Mian I; Li X; Jian Y; Dacres OD; Zhong M; Liu J; Ma F; Rahman N
    Bioresour Technol; 2019 Dec; 294():122099. PubMed ID: 31520856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods.
    Shen DK; Gu S; Jin B; Fang MX
    Bioresour Technol; 2011 Jan; 102(2):2047-52. PubMed ID: 20951030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic performance of potassium in lignocellulosic biomass pyrolysis based on an optimized three-parallel distributed activation energy model.
    Wang C; Li L; Zeng Z; Xu X; Ma X; Chen R; Su C
    Bioresour Technol; 2019 Jun; 281():412-420. PubMed ID: 30849697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-distribution activation energy model on slow pyrolysis of cellulose and lignin in TGA/DSC.
    Kristanto J; Azis MM; Purwono S
    Heliyon; 2021 Jul; 7(7):e07669. PubMed ID: 34386629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria.
    Hu M; Chen Z; Guo D; Liu C; Xiao B; Hu Z; Liu S
    Bioresour Technol; 2015 Feb; 177():41-50. PubMed ID: 25479392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight into derivative Weibull mixture model in describing simulated distributed activation energy model and distillers dried grains with solubles pyrolysis processes.
    Tian L; Li R; Sun Y; Zou J; Liu S; Ma P; Tao H; Qing C; Li C; Yellezuome D; Cai J
    Waste Manag; 2022 Nov; 153():219-228. PubMed ID: 36116216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.