These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29890827)

  • 21. Iron-mediated microbial oxidation and abiotic reduction of organic contaminants under anoxic conditions.
    Tobler NB; Hofstetter TB; Straub KL; Fontana D; Schwarzenbach RP
    Environ Sci Technol; 2007 Nov; 41(22):7765-72. PubMed ID: 18075086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Iron-reducing bacteria decompose lignin by electron transfer from soil organic matter.
    Merino C; Kuzyakov Y; Godoy K; Jofré I; Nájera F; Matus F
    Sci Total Environ; 2021 Mar; 761():143194. PubMed ID: 33183799
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vivianite precipitation and phosphate sorption following iron reduction in anoxic soils.
    Heiberg L; Koch CB; Kjaergaard C; Jensen HS; Hans Christian BH
    J Environ Qual; 2012; 41(3):938-49. PubMed ID: 22565275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of Organic Matter on Iron(II)-Catalyzed Mineral Transformations in Ferrihydrite-Organic Matter Coprecipitates.
    ThomasArrigo LK; Byrne JM; Kappler A; Kretzschmar R
    Environ Sci Technol; 2018 Nov; 52(21):12316-12326. PubMed ID: 30991468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Secondary Mineral Formation and Carbon Dynamics during FeS Oxidation in the Presence of Dissolved Organic Matter.
    Ma H; Wang P; Thompson A; Xie Q; Zhu M; Teng HH; Fu P; Liu C; Chen C
    Environ Sci Technol; 2022 Oct; 56(19):14120-14132. PubMed ID: 36151962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactions of ferrous iron with clay mineral surfaces during sorption and subsequent oxidation.
    Van Groeningen N; ThomasArrigo LK; Byrne JM; Kappler A; Christl I; Kretzschmar R
    Environ Sci Process Impacts; 2020 Jun; 22(6):1355-1367. PubMed ID: 32374339
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes and relations of photosynthesis and iron cycling in anoxic paddy soil amended with high concentrations of sulfate.
    Chen Q; Jia R; Qu D; Li M
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11425-11434. PubMed ID: 28316044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of Fe(II) oxidation in the presence of iron-reducing bacteria on subsequent Fe(III) bio-reduction.
    Chen R; Liu H; Tong M; Zhao L; Zhang P; Liu D; Yuan S
    Sci Total Environ; 2018 Oct; 639():1007-1014. PubMed ID: 29929270
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Active Iron Phases Regulate the Abiotic Transformation of Organic Carbon during Redox Fluctuation Cycles of Paddy Soil.
    Chen N; Fu Q; Wu T; Cui P; Fang G; Liu C; Chen C; Liu G; Wang W; Wang D; Wang P; Zhou D
    Environ Sci Technol; 2021 Oct; 55(20):14281-14293. PubMed ID: 34623154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial reduction of Fe(III) and turnover of acetate in Hawaiian soils.
    Küsel K; Wagner C; Trinkwalter T; Gössner AS; Bäumler R; Drake HL
    FEMS Microbiol Ecol; 2002 Apr; 40(1):73-81. PubMed ID: 19709213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microaerophilic Oxidation of Fe(II) Coupled with Simultaneous Carbon Fixation and As(III) Oxidation and Sequestration in Karstic Paddy Soil.
    Tong H; Zheng C; Li B; Swanner ED; Liu C; Chen M; Xia Y; Liu Y; Ning Z; Li F; Feng X
    Environ Sci Technol; 2021 Mar; 55(6):3634-3644. PubMed ID: 33411520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy.
    Bassez MP
    Orig Life Evol Biosph; 2017 Dec; 47(4):453-480. PubMed ID: 28361301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Iron oxides and aluminous clays selectively control soil carbon storage and stability in the humid tropics.
    Kirsten M; Mikutta R; Vogel C; Thompson A; Mueller CW; Kimaro DN; Bergsma HLT; Feger KH; Kalbitz K
    Sci Rep; 2021 Mar; 11(1):5076. PubMed ID: 33658688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: effect of redox cycling on Fe(III) bioreduction.
    Komlos J; Kukkadapu RK; Zachara JM; Jaffé PR
    Water Res; 2007 Jul; 41(13):2996-3004. PubMed ID: 17467035
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Co-response of Fe-reducing/oxidizing bacteria and Fe species to the dynamic redox cycles of natural sediment.
    Chen R; Liu H; Zhang P; Ma J; Jin M
    Sci Total Environ; 2022 Apr; 815():152953. PubMed ID: 34999076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fe(II)-catalyzed transformation of Fe (oxyhydr)oxides across organic matter fractions in organically amended soils.
    Giannetta B; Balint R; Said-Pullicino D; Plaza C; Martin M; Zaccone C
    Sci Total Environ; 2020 Dec; 748():141125. PubMed ID: 32798857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial Fe(II) oxidation by Sideroxydans lithotrophicus ES-1 in the presence of Schlöppnerbrunnen fen-derived humic acids.
    Hädrich A; Taillefert M; Akob DM; Cooper RE; Litzba U; Wagner FE; Nietzsche S; Ciobota V; Rösch P; Popp J; Küsel K
    FEMS Microbiol Ecol; 2019 Apr; 95(4):. PubMed ID: 30874727
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anaerobic decomposition of switchgrass by tropical soil-derived feedstock-adapted consortia.
    DeAngelis KM; Fortney JL; Borglin S; Silver WL; Simmons BA; Hazen TC
    mBio; 2012; 3(1):. PubMed ID: 22354956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The degradation of dissolved organic matter in black and odorous water by humic substance-mediated Fe(II)/Fe(III) cycle under redox fluctuation.
    Li H; Ding S; Song W; Wang X; Ding J; Lu J
    J Environ Manage; 2022 Nov; 321():115942. PubMed ID: 35985265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.