BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 29890952)

  • 1. Modifier locus mapping of a transgenic F2 mouse population identifies CCDC115 as a novel aggressive prostate cancer modifier gene in humans.
    Winter JM; Curry NL; Gildea DM; Williams KA; Lee M; Hu Y; Crawford NPS
    BMC Genomics; 2018 Jun; 19(1):450. PubMed ID: 29890952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GNL3 and SKA3 are novel prostate cancer metastasis susceptibility genes.
    Lee M; Williams KA; Hu Y; Andreas J; Patel SJ; Zhang S; Crawford NP
    Clin Exp Metastasis; 2015 Dec; 32(8):769-82. PubMed ID: 26429724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A systems genetics approach identifies CXCL14, ITGAX, and LPCAT2 as novel aggressive prostate cancer susceptibility genes.
    Williams KA; Lee M; Hu Y; Andreas J; Patel SJ; Zhang S; Chines P; Elkahloun A; Chandrasekharappa S; Gutkind JS; Molinolo AA; Crawford NP
    PLoS Genet; 2014 Nov; 10(11):e1004809. PubMed ID: 25411967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Germline genetic variation modulates tumor progression and metastasis in a mouse model of neuroendocrine prostate carcinoma.
    Patel SJ; Molinolo AA; Gutkind S; Crawford NP
    PLoS One; 2013; 8(4):e61848. PubMed ID: 23620793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping Complex Traits in a Diversity Outbred F1 Mouse Population Identifies Germline Modifiers of Metastasis in Human Prostate Cancer.
    Winter JM; Gildea DE; Andreas JP; Gatti DM; Williams KA; Lee M; Hu Y; Zhang S; ; Mullikin JC; Wolfsberg TG; McDonnell SK; Fogarty ZC; Larson MC; French AJ; Schaid DJ; Thibodeau SN; Churchill GA; Crawford NP
    Cell Syst; 2017 Jan; 4(1):31-45.e6. PubMed ID: 27916600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interspecies comparison of prostate cancer gene-expression profiles reveals genes associated with aggressive tumors.
    Kela I; Harmelin A; Waks T; Orr-Urtreger A; Domany E; Eshhar Z
    Prostate; 2009 Jul; 69(10):1034-44. PubMed ID: 19343735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression profile of mouse prostate tumors reveals dysregulations in major biological processes and identifies potential murine targets for preclinical development of human prostate cancer therapy.
    Haram KM; Peltier HJ; Lu B; Bhasin M; Otu HH; Choy B; Regan M; Libermann TA; Latham GJ; Sanda MG; Arredouani MS
    Prostate; 2008 Oct; 68(14):1517-30. PubMed ID: 18668517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variants at IRX4 as prostate cancer expression quantitative trait loci.
    Xu X; Hussain WM; Vijai J; Offit K; Rubin MA; Demichelis F; Klein RJ
    Eur J Hum Genet; 2014 Apr; 22(4):558-63. PubMed ID: 24022300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice.
    Kalin TV; Wang IC; Ackerson TJ; Major ML; Detrisac CJ; Kalinichenko VV; Lyubimov A; Costa RH
    Cancer Res; 2006 Feb; 66(3):1712-20. PubMed ID: 16452231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic deletion of osteopontin in TRAMP mice skews prostate carcinogenesis from adenocarcinoma to aggressive human-like neuroendocrine cancers.
    Mauri G; Jachetti E; Comuzzi B; Dugo M; Arioli I; Miotti S; Sangaletti S; Di Carlo E; Tripodo C; Colombo MP
    Oncotarget; 2016 Jan; 7(4):3905-20. PubMed ID: 26700622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression QTL-based analyses reveal candidate causal genes and loci across five tumor types.
    Li Q; Stram A; Chen C; Kar S; Gayther S; Pharoah P; Haiman C; Stranger B; Kraft P; Freedman ML
    Hum Mol Genet; 2014 Oct; 23(19):5294-302. PubMed ID: 24907074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide association analyses reveal significant loci and strong candidate genes for growth and fatness traits in two pig populations.
    Qiao R; Gao J; Zhang Z; Li L; Xie X; Fan Y; Cui L; Ma J; Ai H; Ren J; Huang L
    Genet Sel Evol; 2015 Mar; 47(1):17. PubMed ID: 25885760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic modifier loci of mouse Mfrp(rd6) identified by quantitative trait locus analysis.
    Won J; Charette JR; Philip VM; Stearns TM; Zhang W; Naggert JK; Krebs MP; Nishina PM
    Exp Eye Res; 2014 Jan; 118():30-5. PubMed ID: 24200520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome scan study of prostate cancer in Arabs: identification of three genomic regions with multiple prostate cancer susceptibility loci in Tunisians.
    Shan J; Al-Rumaihi K; Rabah D; Al-Bozom I; Kizhakayil D; Farhat K; Al-Said S; Kfoury H; Dsouza SP; Rowe J; Khalak HG; Jafri S; Aigha II; Chouchane L
    J Transl Med; 2013 May; 11():121. PubMed ID: 23668334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Nucleotide Polymorphisms Sequencing Identifies Candidate Functional Variants at Prostate Cancer Risk Loci.
    Zhang P; Tillmans LS; Thibodeau SN; Wang L
    Genes (Basel); 2019 Jul; 10(7):. PubMed ID: 31323811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic profiling of transgenic adenocarcinoma of mouse prostate (TRAMP) tissue by 1H-NMR analysis: evidence for unusual phospholipid metabolism.
    Teichert F; Verschoyle RD; Greaves P; Edwards RE; Teahan O; Jones DJ; Wilson ID; Farmer PB; Steward WP; Gant TW; Gescher AJ; Keun HC
    Prostate; 2008 Jul; 68(10):1035-47. PubMed ID: 18459103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Networks of intergenic long-range enhancers and snpRNAs drive castration-resistant phenotype of prostate cancer and contribute to pathogenesis of multiple common human disorders.
    Glinskii AB; Ma S; Ma J; Grant D; Lim CU; Guest I; Sell S; Buttyan R; Glinsky GV
    Cell Cycle; 2011 Oct; 10(20):3571-97. PubMed ID: 22067658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine mapping and candidate gene search of quantitative trait loci for growth and obesity using mouse intersubspecific subcongenic intercrosses and exome sequencing.
    Ishikawa A; Okuno S
    PLoS One; 2014; 9(11):e113233. PubMed ID: 25398139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing allele specific expression and local expression quantitative trait loci and the influence of gene expression on complex trait variation in cattle.
    Khansefid M; Pryce JE; Bolormaa S; Chen Y; Millen CA; Chamberlain AJ; Vander Jagt CJ; Goddard ME
    BMC Genomics; 2018 Nov; 19(1):793. PubMed ID: 30390624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribonucleotide reductase small subunit M2 is a master driver of aggressive prostate cancer.
    Mazzu YZ; Armenia J; Nandakumar S; Chakraborty G; Yoshikawa Y; Jehane LE; Lee GM; Atiq M; Khan N; Schultz N; Kantoff PW
    Mol Oncol; 2020 Aug; 14(8):1881-1897. PubMed ID: 32385899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.