These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 29891)
21. The mechanism of porcine pancreatic alpha-amylase. Inhibition of maltopentaose hydrolysis by acarbose, maltose and maltotriose. Al Kazaz M; Desseaux V; Marchis-Mouren G; Prodanov E; Santimone M Eur J Biochem; 1998 Feb; 252(1):100-7. PubMed ID: 9523717 [TBL] [Abstract][Full Text] [Related]
22. Amylolysis of a chromogenic substrate, Cibachron Blue F3GA-amylose: kinetics and mechanism. Klein B; Foreman JA Clin Chem; 1980 Feb; 26(2):250-3. PubMed ID: 6153298 [TBL] [Abstract][Full Text] [Related]
23. Effect of pressure on the mechanism of hydrolysis of maltotetraose, maltopentaose, and maltohexose catalyzed by porcine pancreatic alpha-amylase. Matsumoto T; Makimoto S; Taniguchi Y Biochim Biophys Acta; 1997 Dec; 1343(2):243-50. PubMed ID: 9434115 [TBL] [Abstract][Full Text] [Related]
24. Determination of depolymerization kinetics of amylose, amylopectin, and soluble starch by Aspergillus oryzae alpha-amylase using a fluorimetric 2-p-toluidinylnaphthalene-6-sulfonate/flow-injection analysis system. Batlle N; Carbonell JV; Sendra JM Biotechnol Bioeng; 2000 Dec; 70(5):544-52. PubMed ID: 11042551 [TBL] [Abstract][Full Text] [Related]
25. Optimum pH control mechanism for porcine pancreatic alpha-amylase. Ishikawa K; Matsui I; Honda K Biosci Biotechnol Biochem; 1995 Jun; 59(6):1175-6. PubMed ID: 7613011 [TBL] [Abstract][Full Text] [Related]
26. Porcine-pancreatic alpha amylase hydrolysis of substrates containing 6-deoxy-D-glucose and 6-deoxy-6-fluoro-D-glucose and the specificity of subsite binding. Braun PJ; French D; Robyt JF Carbohydr Res; 1985 Nov; 143():107-16. PubMed ID: 3878731 [TBL] [Abstract][Full Text] [Related]
27. Change of substrate specificity by chemical modification of lysine residues of porcine pancreatic alpha-amylase. Yamashita H; Nakatani H; Tonomura B Biochim Biophys Acta; 1993 Sep; 1202(1):129-34. PubMed ID: 8373816 [TBL] [Abstract][Full Text] [Related]
28. Active-site- and substrate-specificity of Thermoanaerobium Tok6-B1 pullulanase. Plant AR; Clemens RM; Morgan HW; Daniel RM Biochem J; 1987 Sep; 246(2):537-41. PubMed ID: 3500710 [TBL] [Abstract][Full Text] [Related]
29. Substrate-selective activation of histidine-modified porcine pancreatic alpha-amylase by chloride ion. Yamashita H; Nakatani H; Tonomura B J Biochem; 1991 Oct; 110(4):605-7. PubMed ID: 1778982 [TBL] [Abstract][Full Text] [Related]
30. Subsite profile of the active center of porcine pancreatic alpha-amylase. Kinetic studies using maltooligosaccharides as substrates. Prodanov E; Seigner C; Marchis-Mouren G Biochem Biophys Res Commun; 1984 Jul; 122(1):75-81. PubMed ID: 6611158 [TBL] [Abstract][Full Text] [Related]
31. In vitro action of human and porcine alpha-amylases on cyclomalto-oligosaccharides. Kondo H; Nakatani H; Hiromi K Carbohydr Res; 1990 Sep; 204():207-13. PubMed ID: 2279246 [TBL] [Abstract][Full Text] [Related]
32. Characterization and Application of BiLA, a Psychrophilic α-Amylase from Bifidobacterium longum. Lee HW; Jeon HY; Choi HJ; Kim NR; Choung WJ; Koo YS; Ko DS; You S; Shim JH J Agric Food Chem; 2016 Apr; 64(13):2709-18. PubMed ID: 26979859 [TBL] [Abstract][Full Text] [Related]
33. Porcine pancreatic alpha-amylase hydrolysis of hydroxyethylated amylose and specificity of subsite binding. Chan Y; Braun PJ; French D; Robyt JF Biochemistry; 1984 Nov; 23(24):5795-800. PubMed ID: 6441594 [TBL] [Abstract][Full Text] [Related]
34. Studies on the substrate specificity of alpha- and beta-amylase of Entamoeba histolytica. Werries E; Müller F Mol Biochem Parasitol; 1986 Feb; 18(2):211-21. PubMed ID: 2421162 [TBL] [Abstract][Full Text] [Related]
35. Models for depolymerizing enzymes: criteria for discrimination of models. Thoma JA Carbohydr Res; 1976 May; 48(1):85-103. PubMed ID: 7353 [TBL] [Abstract][Full Text] [Related]
36. A study of the mechanism of action of Taka-amylase A1 on linear oligosaccharides by product analysis and computer simulation. Suganuma T; Matsuno R; Ohnishi M; Hiromi K J Biochem; 1978 Aug; 84(2):293-316. PubMed ID: 308947 [TBL] [Abstract][Full Text] [Related]
37. Molecular modelling of the interaction between the catalytic site of pig pancreatic alpha-amylase and amylose fragments. Casset F; Imberty A; Haser R; Payan F; Perez S Eur J Biochem; 1995 Aug; 232(1):284-93. PubMed ID: 7556163 [TBL] [Abstract][Full Text] [Related]
38. Action pattern of porcine pancreatic alpha-amylase on three different series of beta-maltooligosaccharide glycosides. Kandra L; Gyémánt G; Farkas E; Lipták A Carbohydr Res; 1997 Mar; 298(3):237-42. PubMed ID: 9090818 [TBL] [Abstract][Full Text] [Related]
39. Degradation of the starch components amylopectin and amylose by barley α-amylase 1: role of surface binding site 2. Nielsen JW; Kramhøft B; Bozonnet S; Abou Hachem M; Stipp SL; Svensson B; Willemoës M Arch Biochem Biophys; 2012 Dec; 528(1):1-6. PubMed ID: 22902860 [TBL] [Abstract][Full Text] [Related]
40. Determination of beta-amylase activity by a fluorimetric 2-p-toluidinylnaphthalene-6-sulfonate flow-injection analysis (2, 6-TNS-FIA) method, using amylose and amylopectin as substrates. Batlle N; Carbonell JV; Sendra JM Biotechnol Bioeng; 2000 Jan; 67(2):127-33. PubMed ID: 10592509 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]