BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 29891021)

  • 1. Evaluation of the Influence of Clay Montmorillonite Content on the Aqueous Uptake of Lead and Zinc.
    Mu'azu ND
    Water Environ Res; 2018 Sep; 90(9):771-782. PubMed ID: 29891021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances.
    Abollino O; Aceto M; Malandrino M; Sarzanini C; Mentasti E
    Water Res; 2003 Apr; 37(7):1619-27. PubMed ID: 12600390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient removal of p-nitrophenol from water using montmorillonite clay: insights into the adsorption mechanism, process optimization, and regeneration.
    El Ouardi M; Laabd M; Abou Oualid H; Brahmi Y; Abaamrane A; Elouahli A; Ait Addi A; Laknifli A
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19615-19631. PubMed ID: 31079303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of copper and zinc from aqueous solutions by using natural clay.
    Veli S; Alyüz B
    J Hazard Mater; 2007 Oct; 149(1):226-33. PubMed ID: 17560022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competitive adsorption of toxic metals on bentonite and use of chitosan as flocculent coagulant to speed up the settling of generated clay suspensions.
    Ferhat M; Kadouche S; Drouiche N; Messaoudi K; Messaoudi B; Lounici H
    Chemosphere; 2016 Dec; 165():87-93. PubMed ID: 27639464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption Processes of Lead Ions on the Mixture Surface of Bentonite and Bottom Sediments.
    Hegedűsová A; Hegedűs O; Tóth T; Vollmannová A; Andrejiová A; Šlosár M; Mezeyová I; Pernyeszi T
    Bull Environ Contam Toxicol; 2016 Dec; 97(6):876-880. PubMed ID: 27752730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic sorption of ionizable organic compounds (IOCs) and xylene from water using geomaterial-modified montmorillonite.
    Houari M; Hamdi B; Brendle J; Bouras O; Bollinger JC; Baudu M
    J Hazard Mater; 2007 Aug; 147(3):738-45. PubMed ID: 17363159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organo-modification of montmorillonite for enhancing the adsorption efficiency of cobalt radionuclides from aqueous solutions.
    Soliman MA; Rashad GM; Mahmoud MR
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):10398-10413. PubMed ID: 30767104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms.
    Malamis S; Katsou E
    J Hazard Mater; 2013 May; 252-253():428-61. PubMed ID: 23644019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite.
    Selvam PP; Preethi S; Basakaralingam P; Thinakaran N; Sivasamy A; Sivanesan S
    J Hazard Mater; 2008 Jun; 155(1-2):39-44. PubMed ID: 18162299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bisphenol A sorption by organo-montmorillonite: implications for the removal of organic contaminants from water.
    Park Y; Sun Z; Ayoko GA; Frost RL
    Chemosphere; 2014 Jul; 107():249-256. PubMed ID: 24412097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium.
    Sen Gupta S; Bhattacharyya KG
    J Environ Manage; 2008 Apr; 87(1):46-58. PubMed ID: 17499423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bentonite and montmorillonite nanoparticles effectiveness in removal of fluoride from water solutions.
    Naghizadeh A; Gholami K
    J Water Health; 2017 Aug; 15(4):555-565. PubMed ID: 28771153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling of geochemical reactions and experimental cation exchange in MX 80 bentonite.
    Montes-H G; Fritz B; Clement A; Michau N
    J Environ Manage; 2005 Oct; 77(1):35-46. PubMed ID: 15946786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay.
    Vieira MG; Neto AF; Gimenes ML; da Silva MG
    J Hazard Mater; 2010 May; 177(1-3):362-71. PubMed ID: 20042281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suitability of dye-clay complexes for removal of non-ionic organic compounds from aqueous solutions.
    Borisover M; Graber ER; Bercovich F; Gerstl Z
    Chemosphere; 2001 Aug; 44(5):1033-40. PubMed ID: 11513388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavior of bentonite in an aqueous electrolytic solution - evaluation of electrolytic aggregation for adsorption capacity of Cd
    Dilrukshi EAA; Fujino T; Motegi S
    Water Sci Technol; 2018 Jul; 77(11-12):2841-2850. PubMed ID: 30065136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption and desorption behavior of copper ions on Na-montmorillonite: effect of rhamnolipids and pH.
    Ozdemir G; Yapar S
    J Hazard Mater; 2009 Jul; 166(2-3):1307-13. PubMed ID: 19178999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study on retention and release of Zn (II) by mineral and carbonaceous solid phases alone and in a blend.
    Dadhich AS; Bandaru P; Kavitha GV
    J Environ Sci Eng; 2007 Apr; 49(2):109-20. PubMed ID: 18476404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.