These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 29891089)

  • 1. Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning.
    Men K; Zhang T; Chen X; Chen B; Tang Y; Wang S; Li Y; Dai J
    Phys Med; 2018 Jun; 50():13-19. PubMed ID: 29891089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K; Dai J; Li Y
    Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical Target Volume Auto-Segmentation of Esophageal Cancer for Radiotherapy After Radical Surgery Based on Deep Learning.
    Cao R; Pei X; Ge N; Zheng C
    Technol Cancer Res Treat; 2021; 20():15330338211034284. PubMed ID: 34387104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images.
    Men K; Chen X; Zhang Y; Zhang T; Dai J; Yi J; Li Y
    Front Oncol; 2017; 7():315. PubMed ID: 29376025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.
    Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB
    Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical evaluation of deep learning-based automatic clinical target volume segmentation: a single-institution multi-site tumor experience.
    Hou Z; Gao S; Liu J; Yin Y; Zhang L; Han Y; Yan J; Li S
    Radiol Med; 2023 Oct; 128(10):1250-1261. PubMed ID: 37597126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer.
    Ahn SH; Yeo AU; Kim KH; Kim C; Goh Y; Cho S; Lee SB; Lim YK; Kim H; Shin D; Kim T; Kim TH; Youn SH; Oh ES; Jeong JH
    Radiat Oncol; 2019 Nov; 14(1):213. PubMed ID: 31775825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prior information guided auto-segmentation of clinical target volume of tumor bed in postoperative breast cancer radiotherapy.
    Xie X; Song Y; Ye F; Wang S; Yan H; Zhao X; Dai J
    Radiat Oncol; 2023 Oct; 18(1):170. PubMed ID: 37840132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncertainty estimation- and attention-based semi-supervised models for automatically delineate clinical target volume in CBCT images of breast cancer.
    Wang Z; Cao N; Sun J; Zhang H; Zhang S; Ding J; Xie K; Gao L; Ni X
    Radiat Oncol; 2024 May; 19(1):66. PubMed ID: 38811994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi-centric evaluation.
    Kawula M; Hadi I; Nierer L; Vagni M; Cusumano D; Boldrini L; Placidi L; Corradini S; Belka C; Landry G; Kurz C
    Med Phys; 2023 Mar; 50(3):1573-1585. PubMed ID: 36259384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A blind randomized validated convolutional neural network for auto-segmentation of clinical target volume in rectal cancer patients receiving neoadjuvant radiotherapy.
    Wu Y; Kang K; Han C; Wang S; Chen Q; Chen Y; Zhang F; Liu Z
    Cancer Med; 2022 Jan; 11(1):166-175. PubMed ID: 34811957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model.
    Hu Y; Guo Y; Wang Y; Yu J; Li J; Zhou S; Chang C
    Med Phys; 2019 Jan; 46(1):215-228. PubMed ID: 30374980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques.
    Zhu J; Zhang J; Qiu B; Liu Y; Liu X; Chen L
    Acta Oncol; 2019 Feb; 58(2):257-264. PubMed ID: 30398090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional deep neural network for automatic delineation of cervical cancer in planning computed tomography images.
    Ding Y; Chen Z; Wang Z; Wang X; Hu D; Ma P; Ma C; Wei W; Li X; Xue X; Wang X
    J Appl Clin Med Phys; 2022 Apr; 23(4):e13566. PubMed ID: 35192243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Segmentation of the Clinical Target Volume in the Planning CT for Breast Cancer Using Deep Neural Networks.
    Qi X; Hu J; Zhang L; Bai S; Yi Z
    IEEE Trans Cybern; 2022 May; 52(5):3446-3456. PubMed ID: 32833659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical evaluation of atlas- and deep learning-based automatic segmentation of multiple organs and clinical target volumes for breast cancer.
    Choi MS; Choi BS; Chung SY; Kim N; Chun J; Kim YB; Chang JS; Kim JS
    Radiother Oncol; 2020 Dec; 153():139-145. PubMed ID: 32991916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic Segmentation of Clinical Target Volume and Organs-at-Risk for Breast Conservative Radiotherapy Using a Convolutional Neural Network.
    Liu Z; Liu F; Chen W; Tao Y; Liu X; Zhang F; Shen J; Guan H; Zhen H; Wang S; Chen Q; Chen Y; Hou X
    Cancer Manag Res; 2021; 13():8209-8217. PubMed ID: 34754241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep learning-based 3D Prompt-nnUnet model for automatic segmentation in brachytherapy of postoperative endometrial carcinoma.
    Xue X; Liang D; Wang K; Gao J; Ding J; Zhou F; Xu J; Liu H; Sun Q; Jiang P; Tao L; Shi W; Cheng J
    J Appl Clin Med Phys; 2024 Jul; 25(7):e14371. PubMed ID: 38682540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.