These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29891324)

  • 1. A molecular dynamics simulation study on the conformational stability of amylose-linoleic acid complex in water.
    Cheng L; Feng T; Zhang B; Zhu X; Hamaker B; Zhang H; Campanella O
    Carbohydr Polym; 2018 Sep; 196():56-65. PubMed ID: 29891324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complexation process of amylose under different concentrations of linoleic acid using molecular dynamics simulation.
    Cheng L; Zhu X; Hamaker BR; Zhang H; Campanella OH
    Carbohydr Polym; 2019 Jul; 216():157-166. PubMed ID: 31047052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into formation and stability mechanism of V
    Li X; Li C; Feng J; Li T; Zhou D; Wu C; Fan G
    Int J Biol Macromol; 2024 Apr; 265(Pt 2):130930. PubMed ID: 38513898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Stability of V-Amylose Helices in Water-DMSO Mixtures Analyzed by Molecular Dynamics.
    Tusch M; Krüger J; Fels G
    J Chem Theory Comput; 2011 Sep; 7(9):2919-28. PubMed ID: 26605481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amylose folding under the influence of lipids.
    López CA; de Vries AH; Marrink SJ
    Carbohydr Res; 2012 Dec; 364():1-7. PubMed ID: 23128420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Assessment of the Conformational Heterogeneity in Amylose across Force Fields.
    Koneru JK; Zhu X; Mondal J
    J Chem Theory Comput; 2019 Nov; 15(11):6203-6212. PubMed ID: 31560849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Mechanism Underlying the Amylose-Zein Complexation Process and the Stability of the Molecular Conformation of Amylose-Zein Complexes in Water Based on Molecular Dynamics Simulation.
    Wang C; Ji N; Dai L; Qin Y; Shi R; Xiong L; Sun Q
    Foods; 2023 Mar; 12(7):. PubMed ID: 37048239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microsecond kinetics in model single- and double-stranded amylose polymers.
    Sattelle BM; Almond A
    Phys Chem Chem Phys; 2014 May; 16(17):8119-26. PubMed ID: 24652085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of amylose-lipid complexes as molecular nanocapsules for conjugated linoleic Acid.
    Lalush I; Bar H; Zakaria I; Eichler S; Shimoni E
    Biomacromolecules; 2005; 6(1):121-30. PubMed ID: 15638512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The analysis of the effects of high hydrostatic pressure (HHP) on amylose molecular conformation at atomic level based on molecular dynamics simulation.
    Zhi-Guang C; Hong-Hui Z; Keipper W; Hua-Yin P; Qi Y; Chen-Lu F; Guo-Wei S; Jun-Rong H
    Food Chem; 2020 Oct; 327():127047. PubMed ID: 32454269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complexation Mechanisms of Aqueous Amylose: Molecular Dynamics Study Using 3-Pentadecylphenol.
    Skrdla PJ; Coscia BJ; Gavartin J; Browning A; Shelley J; Sanders JM
    Mol Pharm; 2024 Jul; 21(7):3540-3552. PubMed ID: 38900044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct detection of the formation of V-amylose helix by single molecule force spectroscopy.
    Zhang Q; Lu Z; Hu H; Yang W; Marszalek PE
    J Am Chem Soc; 2006 Jul; 128(29):9387-93. PubMed ID: 16848474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray structure of the cyclomaltohexaicosaose triiodide inclusion complex provides a model for amylose-iodine at atomic resolution.
    Nimz O; Gessler K; Usón I; Laettig S; Welfle H; Sheldrick GM; Saenger W
    Carbohydr Res; 2003 Apr; 338(9):977-86. PubMed ID: 12681922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complexation of 26-Mer Amylose with Egg Yolk Lipids with Different Numbers of Tails Using a Molecular Dynamics Simulation.
    Sang S; Xu X; Zhu X; Narsimhan G
    Foods; 2021 Oct; 10(10):. PubMed ID: 34681404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural investigation of amylose complexes with small ligands: inter- or intra-helical associations?
    Rondeau-Mouro C; Le Bail P; Buléon A
    Int J Biol Macromol; 2004 Oct; 34(5):309-15. PubMed ID: 15556233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double helix formation from non-natural amylose analog polysaccharides.
    Yui T; Uto T; Nakauchida T; Yamamoto K; Kadokawa JI
    Carbohydr Polym; 2018 Jun; 189():184-189. PubMed ID: 29580397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of artificial crystalline structure from amylose analog polysaccharide without hydroxy groups at C-2 position.
    Uto T; Nakamura S; Yamamoto K; Kadokawa JI
    Carbohydr Polym; 2020 Jul; 240():116347. PubMed ID: 32475598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectric studies of amylose, amylopectin and amylose-stearic acid complexes.
    Pethrick RA; Song M
    Carbohydr Polym; 2013 Feb; 92(2):1530-8. PubMed ID: 23399185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled nanoparticle of common food constituents that carries a sparingly soluble small molecule.
    Bhopatkar D; Feng T; Chen F; Zhang G; Carignano M; Park SH; Zhuang H; Campanella OH; Hamaker BR
    J Agric Food Chem; 2015 May; 63(17):4312-9. PubMed ID: 25880884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular modelling of the specific interactions involved in the amylose complexation by fatty acids.
    Godet MC; Tran V; Delage MM; Buléon A
    Int J Biol Macromol; 1993 Feb; 15(1):11-6. PubMed ID: 8443126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.