These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 29891326)

  • 1. Thermal conductivity/structure correlations in thermal super-insulating pectin aerogels.
    Groult S; Budtova T
    Carbohydr Polym; 2018 Sep; 196():73-81. PubMed ID: 29891326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pectin-based nanocomposite aerogels for potential insulated food packaging application.
    Nešić A; Gordić M; Davidović S; Radovanović Ž; Nedeljković J; Smirnova I; Gurikov P
    Carbohydr Polym; 2018 Sep; 195():128-135. PubMed ID: 29804960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning bio-aerogel properties for controlling theophylline delivery. Part 1: Pectin aerogels.
    Groult S; Buwalda S; Budtova T
    Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112148. PubMed ID: 34082959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel.
    Rudaz C; Courson R; Bonnet L; Calas-Etienne S; Sallée H; Budtova T
    Biomacromolecules; 2014 Jun; 15(6):2188-95. PubMed ID: 24773153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Starch Aerogels: A Member of the Family of Thermal Superinsulating Materials.
    Druel L; Bardl R; Vorwerg W; Budtova T
    Biomacromolecules; 2017 Dec; 18(12):4232-4239. PubMed ID: 29068674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong, Machinable, and Insulating Chitosan-Urea Aerogels: Toward Ambient Pressure Drying of Biopolymer Aerogel Monoliths.
    Guerrero-Alburquerque N; Zhao S; Adilien N; Koebel MM; Lattuada M; Malfait WJ
    ACS Appl Mater Interfaces; 2020 May; 12(19):22037-22049. PubMed ID: 32302092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Porous, Rigid-Rod Polyamide Aerogels with Superior Mechanical Properties and Unusually High Thermal Conductivity.
    Williams JC; Nguyen BN; McCorkle L; Scheiman D; Griffin JS; Steiner SA; Meador MA
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1801-1809. PubMed ID: 28060486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties.
    Seantier B; Bendahou D; Bendahou A; Grohens Y; Kaddami H
    Carbohydr Polym; 2016 Mar; 138():335-48. PubMed ID: 26794770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superinsulating Polyisocyanate Based Aerogels: A Targeted Search for the Optimum Solvent System.
    Zhu Z; Snellings GMBF; Koebel MM; Malfait WJ
    ACS Appl Mater Interfaces; 2017 May; 9(21):18222-18230. PubMed ID: 28481507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic Modification of Pectin Aerogels via Chemical Vapor Deposition.
    Effraimopoulou E; Jaxel J; Budtova T; Rigacci A
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38931978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties.
    Jiménez-Saelices C; Seantier B; Cathala B; Grohens Y
    Carbohydr Polym; 2017 Feb; 157():105-113. PubMed ID: 27987805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning bio-aerogel properties for controlling drug delivery. Part 2: Cellulose-pectin composite aerogels.
    Groult S; Buwalda S; Budtova T
    Biomater Adv; 2022 Apr; 135():212732. PubMed ID: 35929208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Failure Analysis of Fiber-Reinforced Silica Aerogels under Liquid Nitrogen Thermal Shock.
    Du A; Liu M; Huang S; Li C; Zhou B
    Molecules; 2018 Jun; 23(7):. PubMed ID: 29937521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of biodegradable pectin aerogels and their potential use as drug carriers.
    Veronovski A; Tkalec G; Knez Ž; Novak Z
    Carbohydr Polym; 2014 Nov; 113():272-8. PubMed ID: 25256485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review.
    Karamikamkar S; Naguib HE; Park CB
    Adv Colloid Interface Sci; 2020 Feb; 276():102101. PubMed ID: 31978639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on Thermal Conductivities of Aromatic Polyimide Aerogels.
    Feng J; Wang X; Jiang Y; Du D; Feng J
    ACS Appl Mater Interfaces; 2016 May; 8(20):12992-6. PubMed ID: 27149155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macroscopic-Scale Preparation of Aramid Nanofiber Aerogel by Modified Freezing-Drying Method.
    Xie C; Liu S; Zhang Q; Ma H; Yang S; Guo ZX; Qiu T; Tuo X
    ACS Nano; 2021 Jun; 15(6):10000-10009. PubMed ID: 34086437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cost-Effective Preparation of Hydrophobic and Thermal-Insulating Silica Aerogels.
    Shan J; Shan Y; Zou C; Hong Y; Liu J; Guo X
    Nanomaterials (Basel); 2024 Jan; 14(1):. PubMed ID: 38202574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning bio-aerogel properties. Part 3: Exploring silica-pectin composite aerogels for drug delivery.
    Groult S; Buwalda S; Budtova T
    Biomater Adv; 2024 Jul; 163():213954. PubMed ID: 38996543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Influence of the Precursor's Nature and Drying Conditions on the Structure, Morphology, and Thermal Properties of TiO
    Donėlienė J; Fataraitė-Urbonienė E; Danchova N; Gutzov S; Ulbikas J
    Gels; 2022 Jul; 8(7):. PubMed ID: 35877507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.