BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29891362)

  • 21. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity.
    Jing F; Cantu DC; Tvaruzkova J; Chipman JP; Nikolau BJ; Yandeau-Nelson MD; Reilly PJ
    BMC Biochem; 2011 Aug; 12():44. PubMed ID: 21831316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accumulation of palmitate in Arabidopsis mediated by the acyl-acyl carrier protein thioesterase FATB1.
    Dörmann P; Voelker TA; Ohlrogge JB
    Plant Physiol; 2000 Jun; 123(2):637-44. PubMed ID: 10859193
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of a mutagenized acyl-ACP thioesterase FATA allele from sunflower with improved activity in tobacco leaves and Arabidopsis seeds.
    Moreno-Pérez AJ; Venegas-Calerón M; Vaistij FE; Salas JJ; Larson TR; Garcés R; Graham IA; Martínez-Force E
    Planta; 2014 Mar; 239(3):667-77. PubMed ID: 24327259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Global perspective of herbicide-resistant weeds.
    Heap I
    Pest Manag Sci; 2014 Sep; 70(9):1306-15. PubMed ID: 24302673
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arbuscular mycorrhiza-specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza.
    Bravo A; Brands M; Wewer V; Dörmann P; Harrison MJ
    New Phytol; 2017 Jun; 214(4):1631-1645. PubMed ID: 28380681
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure of plant acetohydroxyacid synthase, the target for several commercial herbicides.
    Garcia MD; Wang JG; Lonhienne T; Guddat LW
    FEBS J; 2017 Jul; 284(13):2037-2051. PubMed ID: 28485824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of novel acyl-ACP thioesterase gene ClFATB1 from Cinnamomum longepaniculatum.
    Lin N; Ai TB; Gao JH; Fan LH; Wang SH; Chen F
    Biochemistry (Mosc); 2013 Nov; 78(11):1298-303. PubMed ID: 24460945
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acyl-ACP thioesterases from Camelina sativa: cloning, enzymatic characterization and implication in seed oil fatty acid composition.
    Rodríguez-Rodríguez MF; Salas JJ; Garcés R; Martínez-Force E
    Phytochemistry; 2014 Nov; 107():7-15. PubMed ID: 25212866
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced free fatty acid production by codon-optimized Lactococcus lactis acyl-ACP thioesterase gene expression in Escherichia coli using crude glycerol.
    Lee S; Park S; Park C; Pack SP; Lee J
    Enzyme Microb Technol; 2014 Dec; 67():8-16. PubMed ID: 25442943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two distinct domains contribute to the substrate acyl chain length selectivity of plant acyl-ACP thioesterase.
    Jing F; Zhao L; Yandeau-Nelson MD; Nikolau BJ
    Nat Commun; 2018 Feb; 9(1):860. PubMed ID: 29491418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cloning, characterization, and expression analysis of acyl-acyl carrier protein (ACP)-thioesterase B from seeds of Chinese Spicehush (Lindera communis).
    Dong S; Huang J; Li Y; Zhang J; Lin S; Zhang Z
    Gene; 2014 May; 542(1):16-22. PubMed ID: 24631366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and functional analyses of a saturated acyl ACP thioesterase, type B from immature seed tissue of Jatropha curcas.
    Dani KG; Hatti KS; Ravikumar P; Kush A
    Plant Biol (Stuttg); 2011 May; 13(3):453-61. PubMed ID: 21489096
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deposition of stearate-oleate rich seed fat in Mangifera indica is mediated by a FatA type acyl-ACP thioesterase.
    Bhattacharjee A; Ghosh SK; Neogi K; Aich A; Willard B; Kinter M; Sen SK; Ghosh D; Ghosh S
    Phytochemistry; 2011 Feb; 72(2-3):166-77. PubMed ID: 21130480
    [TBL] [Abstract][Full Text] [Related]  

  • 34. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in three fenoxaprop-P-ethyl-resistant Beckmannia syzigachne biotypes with differing ACCase mutations.
    Pan L; Zhang J; Wang J; Yu Q; Bai L; Dong L
    J Proteomics; 2017 May; 160():47-54. PubMed ID: 28347864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discovery of an epidermal stearoyl-acyl carrier protein thioesterase. Its potential role in wax biosynthesis.
    Liu D; Post-Beittenmiller D
    J Biol Chem; 1995 Jul; 270(28):16962-9. PubMed ID: 7622515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Study in Scaffold Hopping: Discovery and Optimization of Thiazolopyridines as Potent Herbicides That Inhibit Acyl-ACP Thioesterase.
    Abel SAG; Alnafta N; Asmus E; Bollenbach-Wahl B; Braun R; Dittgen J; Endler A; Frackenpohl J; Freigang J; Gatzweiler E; Heinemann I; Helmke H; Laber B; Lange G; Machettira A; McArthur G; Müller T; Odaybat M; Reingruber AM; Roth S; Rosinger CH; Schmutzler D; Schulte W; Stoppel R; Tiebes J; Volpin G; Barber DM
    J Agric Food Chem; 2023 Nov; 71(47):18212-18226. PubMed ID: 37677080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disruption of plastid acyl:acyl carrier protein synthetases increases medium chain fatty acid accumulation in seeds of transgenic Arabidopsis.
    Tjellström H; Strawsine M; Silva J; Cahoon EB; Ohlrogge JB
    FEBS Lett; 2013 Apr; 587(7):936-42. PubMed ID: 23454211
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of fatty acid oxidation disorder patients with lowered acyl-CoA thioesterase activity in human skin fibroblasts.
    Hunt MC; Ruiter J; Mooyer P; van Roermond CW; Ofman R; Ijlst L; Wanders RJ
    Eur J Clin Invest; 2005 Jan; 35(1):38-46. PubMed ID: 15638818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two activities of long-chain acyl-coenzyme A synthetase are involved in lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis.
    Jessen D; Roth C; Wiermer M; Fulda M
    Plant Physiol; 2015 Feb; 167(2):351-66. PubMed ID: 25540329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Widespread occurrence of both metabolic and target-site herbicide resistance mechanisms in Lolium rigidum populations.
    Han H; Yu Q; Owen MJ; Cawthray GR; Powles SB
    Pest Manag Sci; 2016 Feb; 72(2):255-63. PubMed ID: 25703739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.