BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 29891635)

  • 1. DnaQ exonuclease-like domain of Cas2 promotes spacer integration in a type I-E CRISPR-Cas system.
    Drabavicius G; Sinkunas T; Silanskas A; Gasiunas G; Venclovas Č; Siksnys V
    EMBO Rep; 2018 Jul; 19(7):. PubMed ID: 29891635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex.
    Fagerlund RD; Wilkinson ME; Klykov O; Barendregt A; Pearce FG; Kieper SN; Maxwell HWR; Capolupo A; Heck AJR; Krause KL; Bostina M; Scheltema RA; Staals RHJ; Fineran PC
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):E5122-E5128. PubMed ID: 28611213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration.
    Xiao Y; Ng S; Nam KH; Ke A
    Nature; 2017 Oct; 550(7674):137-141. PubMed ID: 28869593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cas1 and Cas2 From the Type II-C CRISPR-Cas System of
    He Y; Wang M; Liu M; Huang L; Liu C; Zhang X; Yi H; Cheng A; Zhu D; Yang Q; Wu Y; Zhao X; Chen S; Jia R; Zhang S; Liu Y; Yu Y; Zhang L
    Front Cell Infect Microbiol; 2018; 8():195. PubMed ID: 29951376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity.
    Nuñez JK; Kranzusch PJ; Noeske J; Wright AV; Davies CW; Doudna JA
    Nat Struct Mol Biol; 2014 Jun; 21(6):528-34. PubMed ID: 24793649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the Behaviour of Cas1-Cas2 upon Protospacer Binding in CRISPR-Cas Systems using Molecular Dynamics Simulations.
    Wan H; Li J; Chang S; Lin S; Tian Y; Tian X; Wang M; Hu J
    Sci Rep; 2019 Feb; 9(1):3188. PubMed ID: 30816277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages.
    Hynes AP; Villion M; Moineau S
    Nat Commun; 2014 Jul; 5():4399. PubMed ID: 25056268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas adaptation in Escherichia coli.
    Mitić D; Bolt EL; Ivančić-Baće I
    Biosci Rep; 2023 Mar; 43(3):. PubMed ID: 36809461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the DNA-Bound Spacer Capture Complex of a Type II CRISPR-Cas System.
    Wilkinson M; Drabavicius G; Silanskas A; Gasiunas G; Siksnys V; Wigley DB
    Mol Cell; 2019 Jul; 75(1):90-101.e5. PubMed ID: 31080012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fidelity of prespacer capture and processing is governed by the PAM-mediated interactions of Cas1-2 adaptation complex in CRISPR-Cas type I-E system.
    Yoganand KN; Muralidharan M; Nimkar S; Anand B
    J Biol Chem; 2019 Dec; 294(52):20039-20053. PubMed ID: 31748409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processing and integration of functionally oriented prespacers in the
    Ramachandran A; Summerville L; Learn BA; DeBell L; Bailey S
    J Biol Chem; 2020 Mar; 295(11):3403-3414. PubMed ID: 31914418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harnessing CRISPR-Cas adaptation for RNA recording and beyond.
    Oh GS; An S; Kim S
    BMB Rep; 2024 Jan; 57(1):40-49. PubMed ID: 38053290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cas4 Nucleases Define the PAM, Length, and Orientation of DNA Fragments Integrated at CRISPR Loci.
    Shiimori M; Garrett SC; Graveley BR; Terns MP
    Mol Cell; 2018 Jun; 70(5):814-824.e6. PubMed ID: 29883605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation.
    Wei Y; Terns RM; Terns MP
    Genes Dev; 2015 Feb; 29(4):356-61. PubMed ID: 25691466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective loading and processing of prespacers for precise CRISPR adaptation.
    Kim S; Loeff L; Colombo S; Jergic S; Brouns SJJ; Joo C
    Nature; 2020 Mar; 579(7797):141-145. PubMed ID: 32076262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of spacer acquisition by sequential assembly of the adaptation module in Synechocystis.
    Wu C; Tang D; Cheng J; Hu D; Yang Z; Ma X; He H; Yao S; Fu TM; Yu Y; Chen Q
    Nucleic Acids Res; 2021 Mar; 49(5):2973-2984. PubMed ID: 33619565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DnaQ mediates directional spacer acquisition in the CRISPR-Cas system by a time-dependent mechanism.
    Tang D; Jia T; Luo Y; Mou B; Cheng J; Qi S; Yao S; Su Z; Yu Y; Chen Q
    Innovation (Camb); 2023 Sep; 4(5):100495. PubMed ID: 37663930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR DNA elements controlling site-specific spacer integration and proper repeat length by a Type II CRISPR-Cas system.
    Kim JG; Garrett S; Wei Y; Graveley BR; Terns MP
    Nucleic Acids Res; 2019 Sep; 47(16):8632-8648. PubMed ID: 31392984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A distinct structure of Cas1-Cas2 complex provides insights into the mechanism for the longer spacer acquisition in Pyrococcus furiosus.
    Tang D; Li H; Wu C; Jia T; He H; Yao S; Yu Y; Chen Q
    Int J Biol Macromol; 2021 Jul; 183():379-386. PubMed ID: 33864868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cas4-Cas1 Is a Protospacer Adjacent Motif-Processing Factor Mediating Half-Site Spacer Integration During CRISPR Adaptation.
    Kieper SN; Almendros C; Haagsma AC; Barendregt A; Heck AJR; Brouns SJJ
    CRISPR J; 2021 Aug; 4(4):536-548. PubMed ID: 34406043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.