These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29891657)

  • 1. Bacterial iron acquisition mediated by outer membrane translocation and cleavage of a host protein.
    Mosbahi K; Wojnowska M; Albalat A; Walker D
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):6840-6845. PubMed ID: 29891657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FusB Energizes Import across the Outer Membrane through Direct Interaction with Its Ferredoxin Substrate.
    Wojnowska M; Walker D
    mBio; 2020 Oct; 11(5):. PubMed ID: 33109756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protease-associated import systems are widespread in Gram-negative bacteria.
    Grinter R; Leung PM; Wijeyewickrema LC; Littler D; Beckham S; Pike RN; Walker D; Greening C; Lithgow T
    PLoS Genet; 2019 Oct; 15(10):e1008435. PubMed ID: 31613892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FusC, a member of the M16 protease family acquired by bacteria for iron piracy against plants.
    Grinter R; Hay ID; Song J; Wang J; Teng D; Dhanesakaran V; Wilksch JJ; Davies MR; Littler D; Beckham SA; Henderson IR; Strugnell RA; Dougan G; Lithgow T
    PLoS Biol; 2018 Aug; 16(8):e2006026. PubMed ID: 30071011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the bacterial plant-ferredoxin receptor FusA.
    Grinter R; Josts I; Mosbahi K; Roszak AW; Cogdell RJ; Bonvin AM; Milner JJ; Kelly SM; Byron O; Smith BO; Walker D
    Nat Commun; 2016 Oct; 7():13308. PubMed ID: 27796364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways.
    Schalk IJ; Guillon L
    Amino Acids; 2013 May; 44(5):1267-77. PubMed ID: 23443998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferredoxin containing bacteriocins suggest a novel mechanism of iron uptake in Pectobacterium spp.
    Grinter R; Milner J; Walker D
    PLoS One; 2012; 7(3):e33033. PubMed ID: 22427936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beware of proteins bearing gifts: protein antibiotics that use iron as a Trojan horse.
    Grinter R; Milner J; Walker D
    FEMS Microbiol Lett; 2013 Jan; 338(1):1-9. PubMed ID: 22998625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TonB or not TonB: is that the question?
    Krewulak KD; Vogel HJ
    Biochem Cell Biol; 2011 Apr; 89(2):87-97. PubMed ID: 21455261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo synthesis of the periplasmic domain of TonB inhibits transport through the FecA and FhuA iron siderophore transporters of Escherichia coli.
    Howard SP; Herrmann C; Stratilo CW; Braun V
    J Bacteriol; 2001 Oct; 183(20):5885-95. PubMed ID: 11566987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid evolution of a bacterial iron acquisition system.
    Chatterjee A; O'Brian MR
    Mol Microbiol; 2018 Apr; 108(1):90-100. PubMed ID: 29381237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of iron-free siderophores by TonB-dependent iron transporters.
    Schalk IJ; Yue WW; Buchanan SK
    Mol Microbiol; 2004 Oct; 54(1):14-22. PubMed ID: 15458401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TonB and the gram-negative dilemma.
    Postle K
    Mol Microbiol; 1990 Dec; 4(12):2019-25. PubMed ID: 2150975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery.
    Schauer K; Gouget B; Carrière M; Labigne A; de Reuse H
    Mol Microbiol; 2007 Feb; 63(4):1054-68. PubMed ID: 17238922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploitation of an iron transporter for bacterial protein antibiotic import.
    White P; Joshi A; Rassam P; Housden NG; Kaminska R; Goult JD; Redfield C; McCaughey LC; Walker D; Mohammed S; Kleanthous C
    Proc Natl Acad Sci U S A; 2017 Nov; 114(45):12051-12056. PubMed ID: 29078392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ABC transporter with two periplasmic binding proteins involved in iron acquisition in Pseudomonas aeruginosa.
    Brillet K; Ruffenach F; Adams H; Journet L; Gasser V; Hoegy F; Guillon L; Hannauer M; Page A; Schalk IJ
    ACS Chem Biol; 2012 Dec; 7(12):2036-45. PubMed ID: 23009327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From Homodimer to Heterodimer and Back: Elucidating the TonB Energy Transduction Cycle.
    Gresock MG; Kastead KA; Postle K
    J Bacteriol; 2015 Nov; 197(21):3433-45. PubMed ID: 26283773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A periplasmic iron-binding protein contributes toward inward copper supply.
    Waldron KJ; Tottey S; Yanagisawa S; Dennison C; Robinson NJ
    J Biol Chem; 2007 Feb; 282(6):3837-46. PubMed ID: 17148438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron acquisition through the bacterial transferrin receptor.
    Pogoutse AK; Moraes TF
    Crit Rev Biochem Mol Biol; 2017 Jun; 52(3):314-326. PubMed ID: 28276700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TonB-Dependent Utilization of Dihydroxamate Xenosiderophores in Synechocystis sp. PCC 6803.
    Babykin MM; Obando TSA; Zinchenko VV
    Curr Microbiol; 2018 Feb; 75(2):117-123. PubMed ID: 28900692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.