BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 29891710)

  • 1. Oxygen isotope composition of the Phanerozoic ocean and a possible solution to the dolomite problem.
    Ryb U; Eiler JM
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):6602-6607. PubMed ID: 29891710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean.
    Blake RE; Chang SJ; Lepland A
    Nature; 2010 Apr; 464(7291):1029-32. PubMed ID: 20393560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen isotope analysis of carbonates in the calcite-dolomite-magnesite solid-solution by high-temperature pyrolysis: initial results.
    Crowley SF; Spero HJ; Winter DA; Sloane HJ; Croudace IW
    Rapid Commun Mass Spectrom; 2008 Jun; 22(11):1703-13. PubMed ID: 18446821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen isotope fractionation between bird eggshell calcite and body water: application to fossil eggs from Lanzarote (Canary Islands).
    Lazzerini N; Lécuyer C; Amiot R; Angst D; Buffetaut E; Fourel F; Daux V; Betancort JF; Flandrois JP; Marco AS; Lomoschitz A
    Naturwissenschaften; 2016 Oct; 103(9-10):81. PubMed ID: 27639729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geochemical evidence for widespread euxinia in the later Cambrian ocean.
    Gill BC; Lyons TW; Young SA; Kump LR; Knoll AH; Saltzman MR
    Nature; 2011 Jan; 469(7328):80-3. PubMed ID: 21209662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelled atmospheric temperatures and global sea levels over the past million years.
    Bintanja R; van de Wal RS; Oerlemans J
    Nature; 2005 Sep; 437(7055):125-8. PubMed ID: 16136140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An early Cambrian greenhouse climate.
    Hearing TW; Harvey THP; Williams M; Leng MJ; Lamb AL; Wilby PR; Gabbott SE; Pohl A; Donnadieu Y
    Sci Adv; 2018 May; 4(5):eaar5690. PubMed ID: 29750198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. (238)U/(235)U isotope ratios of crustal material, rivers and products of hydrothermal alteration: new insights on the oceanic U isotope mass balance.
    Noordmann J; Weyer S; Georg RB; Jöns S; Sharma M
    Isotopes Environ Health Stud; 2016; 52(1-2):141-63. PubMed ID: 26085006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geochemistry of Precambrian carbonates: II. Archean greenstone belts and Archean sea water.
    Veizer J; Hoefs J; Lowe DR; Thurston PC
    Geochim Cosmochim Acta; 1989; 53():859-71. PubMed ID: 11539784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts.
    Robert F; Chaussidon M
    Nature; 2006 Oct; 443(7114):969-72. PubMed ID: 17066030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The late Precambrian greening of the Earth.
    Knauth LP; Kennedy MJ
    Nature; 2009 Aug; 460(7256):728-32. PubMed ID: 19587681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Palaeoclimatology: evidence for hot early oceans?
    Shields GA; Kasting JF
    Nature; 2007 May; 447(7140):E1; discussion E1-2. PubMed ID: 17476216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans.
    Dickson JA
    Science; 2002 Nov; 298(5596):1222-4. PubMed ID: 12424375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Massive formation of early diagenetic dolomite in the Ediacaran ocean: Constraints on the "dolomite problem".
    Chang B; Li C; Liu D; Foster I; Tripati A; Lloyd MK; Maradiaga I; Luo G; An Z; She Z; Xie S; Tong J; Huang J; Algeo TJ; Lyons TW; Immenhauser A
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):14005-14014. PubMed ID: 32513736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa.
    Beukes NJ; Klein C; Kaufman AJ; Hayes JM
    Econ Geol; 1990; 85(4):663-90. PubMed ID: 11538478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous carbonate precipitates: is the Precambrian the key to the Permian?
    Grotzinger JP; Knoll AH
    Palaios; 1995 Dec; 10(6):578-96. PubMed ID: 11542266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism.
    Kaufman AJ; Hayes JM; Knoll AH; Germs GJ
    Precambrian Res; 1991; 49():301-27. PubMed ID: 11538647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LOW-TEMPERATURE AQUEOUS ALTERATION ON THE CR CHONDRITE PARENT BODY: IMPLICATIONS FROM
    Jilly-Rehak CE; Huss GR; Nagashima K; Schrader DL
    Geochim Cosmochim Acta; 2018 Feb; 222():230-252. PubMed ID: 29713092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Palaeoclimate: the riddle of the sediments.
    Siddall M
    Nature; 2005 Sep; 437(7055):39-41. PubMed ID: 16136118
    [No Abstract]   [Full Text] [Related]  

  • 20. δ18O anchoring to VPDB: calcite digestion with 18O-adjusted ortho-phosphoric acid.
    Wendeberg M; Richter JM; Rothe M; Brand WA
    Rapid Commun Mass Spectrom; 2011 Apr; 25(7):851-60. PubMed ID: 21416521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.