BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 29891842)

  • 1. 3D biodegradable scaffolds of polycaprolactone with silicate-containing hydroxyapatite microparticles for bone tissue engineering: high-resolution tomography and in vitro study.
    Shkarina S; Shkarin R; Weinhardt V; Melnik E; Vacun G; Kluger PJ; Loza K; Epple M; Ivlev SI; Baumbach T; Surmeneva MA; Surmenev RA
    Sci Rep; 2018 Jun; 8(1):8907. PubMed ID: 29891842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering.
    Gorodzha SN; Muslimov AR; Syromotina DS; Timin AS; Tcvetkov NY; Lepik KV; Petrova AV; Surmeneva MA; Gorin DA; Sukhorukov GB; Surmenev RA
    Colloids Surf B Biointerfaces; 2017 Dec; 160():48-59. PubMed ID: 28917149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering.
    Park SA; Lee SH; Kim WD
    Bioprocess Biosyst Eng; 2011 May; 34(4):505-13. PubMed ID: 21170553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering.
    Ambre AH; Katti DR; Katti KS
    J Biomed Mater Res A; 2015 Jun; 103(6):2077-101. PubMed ID: 25331212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.
    Allo BA; Rizkalla AS; Mequanint K
    Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth.
    Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM
    J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomineralized porous composite scaffolds prepared by chemical synthesis for bone tissue regeneration.
    Raucci MG; D'Antò V; Guarino V; Sardella E; Zeppetelli S; Favia P; Ambrosio L
    Acta Biomater; 2010 Oct; 6(10):4090-9. PubMed ID: 20417736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone.
    Neufurth M; Wang X; Wang S; Steffen R; Ackermann M; Haep ND; Schröder HC; Müller WEG
    Acta Biomater; 2017 Dec; 64():377-388. PubMed ID: 28966095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel process.
    Rezaei A; Mohammadi MR
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):390-6. PubMed ID: 25428086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration.
    Shitole AA; Raut PW; Sharma N; Giram P; Khandwekar AP; Garnaik B
    J Mater Sci Mater Med; 2019 Apr; 30(5):51. PubMed ID: 31011810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.
    Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I
    Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun 3D composite scaffolds for craniofacial critical size defects.
    Chakrapani VY; Kumar TSS; Raj DK; Kumary TV
    J Mater Sci Mater Med; 2017 Aug; 28(8):119. PubMed ID: 28685233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polycaprolactone fibrous electrospun scaffolds reinforced with copper doped wollastonite for bone tissue engineering applications.
    Abudhahir M; Saleem A; Paramita P; Kumar SD; Tze-Wen C; Selvamurugan N; Moorthi A
    J Biomed Mater Res B Appl Biomater; 2021 May; 109(5):654-664. PubMed ID: 32935919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Textile Platform Using Continuous Aligned and Textured Composite Microfibers to Engineer Tendon-to-Bone Interface Gradient Scaffolds.
    Calejo I; Costa-Almeida R; Reis RL; Gomes ME
    Adv Healthc Mater; 2019 Aug; 8(15):e1900200. PubMed ID: 31190369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biphasic organo-bioceramic fibrous composite as a biomimetic extracellular matrix for bone tissue regeneration.
    Kumar S; Stokes JA; Dean D; Rogers C; Nyairo E; Thomas V; Mishra MK
    Front Biosci (Elite Ed); 2017 Mar; 9(2):192-203. PubMed ID: 28199184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectiveness of mesenchymal stem cell-seeded onto the 3D polylactic acid/polycaprolactone/hydroxyapatite scaffold on the radius bone defect in rat.
    Oryan A; Hassanajili S; Sahvieh S; Azarpira N
    Life Sci; 2020 Sep; 257():118038. PubMed ID: 32622947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.
    Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration.
    Thadavirul N; Pavasant P; Supaphol P
    J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.