These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 29891958)

  • 1. Selective manipulation of electronically excited states through strong light-matter interactions.
    Stranius K; Hertzog M; Börjesson K
    Nat Commun; 2018 Jun; 9(1):2273. PubMed ID: 29891958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Investigations of the Detailed Mechanism of Reverse Intersystem Crossing in Inverted Singlet-Triplet Gap Molecules.
    Valverde D; Ser CT; Ricci G; Jorner K; Pollice R; Aspuru-Guzik A; Olivier Y
    ACS Appl Mater Interfaces; 2024 Dec; 16(49):66991-67001. PubMed ID: 38728616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Barrier-free reverse-intersystem crossing in organic molecules by strong light-matter coupling.
    Yu Y; Mallick S; Wang M; Börjesson K
    Nat Commun; 2021 May; 12(1):3255. PubMed ID: 34059685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverting singlet and triplet excited states using strong light-matter coupling.
    Eizner E; Martínez-Martínez LA; Yuen-Zhou J; Kéna-Cohen S
    Sci Adv; 2019 Dec; 5(12):eaax4482. PubMed ID: 31840063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reverse intersystem crossing from upper triplet levels to excited singlet: a 'hot excition' path for organic light-emitting diodes.
    Hu D; Yao L; Yang B; Ma Y
    Philos Trans A Math Phys Eng Sci; 2015 Jun; 373(2044):. PubMed ID: 25987570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lowering of the singlet-triplet energy gap via intramolecular exciton-exciton coupling.
    Schäfer C; Ringström R; Hanrieder J; Rahm M; Albinsson B; Börjesson K
    Nat Commun; 2024 Oct; 15(1):8705. PubMed ID: 39379375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Singlet and triplet excited states and intersystem crossing in free-base porphyrin: TDDFT and DFT/MRCI study.
    Perun S; Tatchen J; Marian CM
    Chemphyschem; 2008 Feb; 9(2):282-92. PubMed ID: 18189251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the potential for efficient triplet harvesting with hot excitons.
    Northey T; Keane T; Eng J; Penfold TJ
    Faraday Discuss; 2019 Jul; 216(0):395-413. PubMed ID: 31012872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic molecules with inverted singlet-triplet gaps.
    Li J; Li Z; Liu H; Gong H; Zhang J; Yao Y; Guo Q
    Front Chem; 2022; 10():999856. PubMed ID: 36092667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of secondary donor units on the excited-state properties and thermally activated delayed fluorescence (TADF) efficiency of pentacarbazole-benzonitrile emitters.
    Cho E; Liu L; Coropceanu V; Brédas JL
    J Chem Phys; 2020 Oct; 153(14):144708. PubMed ID: 33086823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do any types of double-hybrid models render the correct order of excited state energies in inverted singlet-triplet emitters?
    Alipour M; Izadkhast T
    J Chem Phys; 2022 Feb; 156(6):064302. PubMed ID: 35168336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Reverse Intersystem Crossing Promoted by Triplet Exciton-Photon Coupling.
    Ou Q; Shao Y; Shuai Z
    J Am Chem Soc; 2021 Oct; 143(42):17786-17792. PubMed ID: 34644062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible-Light-Driven Triplet Sensitization of Polycyclic Aromatic Hydrocarbons Using Thionated Perinones.
    Palmer JR; Wells KA; Yarnell JE; Favale JM; Castellano FN
    J Phys Chem Lett; 2020 Jul; 11(13):5092-5099. PubMed ID: 32517474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing the spin-vibronic coupling mechanism of thermally activated delayed fluorescence.
    Etherington MK; Gibson J; Higginbotham HF; Penfold TJ; Monkman AP
    Nat Commun; 2016 Nov; 7():13680. PubMed ID: 27901046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harvesting highly electronically excited energy to triplet manifolds: state-dependent intersystem crossing rate in Os(II) and Ag(I) complexes.
    Hsu CC; Lin CC; Chou PT; Lai CH; Hsu CW; Lin CH; Chi Y
    J Am Chem Soc; 2012 May; 134(18):7715-24. PubMed ID: 22515479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Rate-limited effect" of reverse intersystem crossing process: the key for tuning thermally activated delayed fluorescence lifetime and efficiency roll-off of organic light emitting diodes.
    Cai X; Li X; Xie G; He Z; Gao K; Liu K; Chen D; Cao Y; Su SJ
    Chem Sci; 2016 Jul; 7(7):4264-4275. PubMed ID: 30155073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal equilibration between singlet and triplet excited states in organic fluorophore for submicrosecond delayed fluorescence.
    Aizawa N; Matsumoto A; Yasuda T
    Sci Adv; 2021 Feb; 7(7):. PubMed ID: 33579700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protonated Ground-State Singlet
    Ma X; Feng E; Jiang H; Boulos VM; Gao J; Nash JJ; Kenttämaa HI
    J Org Chem; 2021 Feb; 86(4):3249-3260. PubMed ID: 33555870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermally Activated Delayed Fluorescence (TADF) Path toward Efficient Electroluminescence in Purely Organic Materials: Molecular Level Insight.
    Chen XK; Kim D; Brédas JL
    Acc Chem Res; 2018 Sep; 51(9):2215-2224. PubMed ID: 30141908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generating Light from Upper Excited Triplet States: A Contribution to the Indirect Singlet Yield of a Polymer OLED, Helping to Exceed the 25% Singlet Exciton Limit.
    Jankus V; Aydemir M; Dias FB; Monkman AP
    Adv Sci (Weinh); 2016 Jan; 3(1):1500221. PubMed ID: 27610333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.