These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. From the Lugiato-Lefever equation to microresonator-based soliton Kerr frequency combs. Lugiato LA; Prati F; Gorodetsky ML; Kippenberg TJ Philos Trans A Math Phys Eng Sci; 2018 Nov; 376(2135):. PubMed ID: 30420551 [TBL] [Abstract][Full Text] [Related]
5. Interlocking Kerr-microresonator frequency combs for microwave to optical synthesis. Briles TC; Stone JR; Drake TE; Spencer DT; Fredrick C; Li Q; Westly D; Ilic BR; Srinivasan K; Diddams SA; Papp SB Opt Lett; 2018 Jun; 43(12):2933-2936. PubMed ID: 29905727 [TBL] [Abstract][Full Text] [Related]
6. Dissipative Kerr solitons in optical microresonators. Kippenberg TJ; Gaeta AL; Lipson M; Gorodetsky ML Science; 2018 Aug; 361(6402):. PubMed ID: 30093576 [TBL] [Abstract][Full Text] [Related]
7. Photonic chip-based soliton frequency combs covering the biological imaging window. Karpov M; Pfeiffer MHP; Liu J; Lukashchuk A; Kippenberg TJ Nat Commun; 2018 Mar; 9(1):1146. PubMed ID: 29559634 [TBL] [Abstract][Full Text] [Related]
8. Ultrafast optical ranging using microresonator soliton frequency combs. Trocha P; Karpov M; Ganin D; Pfeiffer MHP; Kordts A; Wolf S; Krockenberger J; Marin-Palomo P; Weimann C; Randel S; Freude W; Kippenberg TJ; Koos C Science; 2018 Feb; 359(6378):887-891. PubMed ID: 29472477 [TBL] [Abstract][Full Text] [Related]
9. Raman Self-Frequency Shift of Dissipative Kerr Solitons in an Optical Microresonator. Karpov M; Guo H; Kordts A; Brasch V; Pfeiffer MH; Zervas M; Geiselmann M; Kippenberg TJ Phys Rev Lett; 2016 Mar; 116(10):103902. PubMed ID: 27015482 [TBL] [Abstract][Full Text] [Related]
10. Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation. Xue X; Leo F; Xuan Y; Jaramillo-Villegas JA; Wang PH; Leaird DE; Erkintalo M; Qi M; Weiner AM Light Sci Appl; 2017 Apr; 6(4):e16253. PubMed ID: 30167244 [TBL] [Abstract][Full Text] [Related]
11. Battery-operated integrated frequency comb generator. Stern B; Ji X; Okawachi Y; Gaeta AL; Lipson M Nature; 2018 Oct; 562(7727):401-405. PubMed ID: 30297798 [TBL] [Abstract][Full Text] [Related]
12. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Zhang M; Buscaino B; Wang C; Shams-Ansari A; Reimer C; Zhu R; Kahn JM; Lončar M Nature; 2019 Apr; 568(7752):373-377. PubMed ID: 30858615 [TBL] [Abstract][Full Text] [Related]
13. Harnessing sub-comb dynamics in a graphene-sensitized microresonator for gas detection. Liang Y; Liu M; Tang F; Guo Y; Zhang H; Liu S; Yang Y; Zhao G; Tan T; Yao B Front Optoelectron; 2024 May; 17(1):12. PubMed ID: 38689035 [TBL] [Abstract][Full Text] [Related]
14. Surpassing the nonlinear conversion efficiency of soliton microcombs. Helgason ÓB; Girardi M; Ye Z; Lei F; Schröder J; Torres-Company V Nat Photonics; 2023; 17(11):992-999. PubMed ID: 37920810 [TBL] [Abstract][Full Text] [Related]
15. Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation. Kordts A; Pfeiffer MH; Guo H; Brasch V; Kippenberg TJ Opt Lett; 2016 Feb; 41(3):452-5. PubMed ID: 26907395 [TBL] [Abstract][Full Text] [Related]
16. Graphene-Coupled Terahertz Semiconductor Lasers for Enhanced Passive Frequency Comb Operation. Li H; Yan M; Wan W; Zhou T; Zhou K; Li Z; Cao J; Yu Q; Zhang K; Li M; Nan J; He B; Zeng H Adv Sci (Weinh); 2019 Oct; 6(20):1900460. PubMed ID: 31637156 [TBL] [Abstract][Full Text] [Related]
17. A broadband chip-scale optical frequency synthesizer at 2.7 × 10(-16) relative uncertainty. Huang SW; Yang J; Yu M; McGuyer BH; Kwong DL; Zelevinsky T; Wong CW Sci Adv; 2016 Apr; 2(4):e1501489. PubMed ID: 27152341 [TBL] [Abstract][Full Text] [Related]
18. Breathing dissipative solitons in optical microresonators. Lucas E; Karpov M; Guo H; Gorodetsky ML; Kippenberg TJ Nat Commun; 2017 Sep; 8(1):736. PubMed ID: 28963496 [TBL] [Abstract][Full Text] [Related]
19. Microresonator-based solitons for massively parallel coherent optical communications. Marin-Palomo P; Kemal JN; Karpov M; Kordts A; Pfeifle J; Pfeiffer MHP; Trocha P; Wolf S; Brasch V; Anderson MH; Rosenberger R; Vijayan K; Freude W; Kippenberg TJ; Koos C Nature; 2017 Jun; 546(7657):274-279. PubMed ID: 28593968 [TBL] [Abstract][Full Text] [Related]
20. A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz. Huang SW; Yang J; Lim J; Zhou H; Yu M; Kwong DL; Wong CW Sci Rep; 2015 Aug; 5():13355. PubMed ID: 26311406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]