These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Ihry RJ; Worringer KA; Salick MR; Frias E; Ho D; Theriault K; Kommineni S; Chen J; Sondey M; Ye C; Randhawa R; Kulkarni T; Yang Z; McAllister G; Russ C; Reece-Hoyes J; Forrester W; Hoffman GR; Dolmetsch R; Kaykas A Nat Med; 2018 Jul; 24(7):939-946. PubMed ID: 29892062 [TBL] [Abstract][Full Text] [Related]
3. Marker-free genome editing in Ustilago trichophora with the CRISPR-Cas9 technology. Huck S; Bock J; Girardello J; Gauert M; Pul Ü RNA Biol; 2019 Apr; 16(4):397-403. PubMed ID: 29996713 [TBL] [Abstract][Full Text] [Related]
4. Parallel CRISPR-Cas9 screens clarify impacts of p53 on screen performance. Bowden AR; Morales-Juarez DA; Sczaniecka-Clift M; Agudo MM; Lukashchuk N; Thomas JC; Jackson SP Elife; 2020 May; 9():. PubMed ID: 32441252 [TBL] [Abstract][Full Text] [Related]
5. NFκB regulates p21 expression and controls DNA damage-induced leukemic differentiation. Nicolae CM; O'Connor MJ; Constantin D; Moldovan GL Oncogene; 2018 Jul; 37(27):3647-3656. PubMed ID: 29622796 [TBL] [Abstract][Full Text] [Related]
6. CRISPR/Cas9 treatment causes extended TP53-dependent cell cycle arrest in human cells. Geisinger JM; Stearns T Nucleic Acids Res; 2020 Sep; 48(16):9067-9081. PubMed ID: 32687165 [TBL] [Abstract][Full Text] [Related]
7. Analysis of conventional and alternative CRISPR/Cas9 genome editing to enhance a single-base pair knock-in mutation. Edmondson C; Zhou Q; Liu X BMC Biotechnol; 2021 Jul; 21(1):45. PubMed ID: 34315458 [TBL] [Abstract][Full Text] [Related]
8. CRISPR screens are feasible in TP53 wild-type cells. Brown KR; Mair B; Soste M; Moffat J Mol Syst Biol; 2019 Aug; 15(8):e8679. PubMed ID: 31464370 [TBL] [Abstract][Full Text] [Related]
9. Optical Control of a CRISPR/Cas9 System for Gene Editing by Using Photolabile crRNA. Zhang Y; Ling X; Su X; Zhang S; Wang J; Zhang P; Feng W; Zhu YY; Liu T; Tang X Angew Chem Int Ed Engl; 2020 Nov; 59(47):20895-20899. PubMed ID: 33448579 [TBL] [Abstract][Full Text] [Related]
10. Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases (Review). Rodríguez-Rodríguez DR; Ramírez-Solís R; Garza-Elizondo MA; Garza-Rodríguez ML; Barrera-Saldaña HA Int J Mol Med; 2019 Apr; 43(4):1559-1574. PubMed ID: 30816503 [TBL] [Abstract][Full Text] [Related]
11. CRISPR-Cas9; an efficient tool for precise plant genome editing. Islam W Mol Cell Probes; 2018 Jun; 39():47-52. PubMed ID: 29621557 [TBL] [Abstract][Full Text] [Related]
12. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing. Leibowitz ML; Papathanasiou S; Doerfler PA; Blaine LJ; Sun L; Yao Y; Zhang CZ; Weiss MJ; Pellman D Nat Genet; 2021 Jun; 53(6):895-905. PubMed ID: 33846636 [TBL] [Abstract][Full Text] [Related]
13. CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement. Hussain B; Lucas SJ; Budak H Brief Funct Genomics; 2018 Sep; 17(5):319-328. PubMed ID: 29912293 [TBL] [Abstract][Full Text] [Related]