These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 29892139)
1. Functional Data Approximation on Bounded Domains using Polygonal Finite Elements. Cao J; Xiao Y; Chen Z; Wang W; Bajaj C Comput Aided Geom Des; 2018 Jul; 63():149-163. PubMed ID: 29892139 [TBL] [Abstract][Full Text] [Related]
2. QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES. Rand A; Gillette A; Bajaj C Math Comput; 2014; 83(290):2691-2716. PubMed ID: 25301974 [TBL] [Abstract][Full Text] [Related]
3. CONSTRUCTION OF SCALAR AND VECTOR FINITE ELEMENT FAMILIES ON POLYGONAL AND POLYHEDRAL MESHES. Gillette A; Rand A; Bajaj C J Comput Methods Appl Math; 2016 Oct; 16(4):667-683. PubMed ID: 28077939 [TBL] [Abstract][Full Text] [Related]
5. Interpolation Error Estimates for Mean Value Coordinates over Convex Polygons. Rand A; Gillette A; Bajaj C Adv Comput Math; 2013 Aug; 39(2):327-347. PubMed ID: 24027379 [TBL] [Abstract][Full Text] [Related]
6. A Posteriori Error Estimates for Fully Discrete Finite Element Method for Generalized Diffusion Equation with Delay. Wang W; Yi L; Xiao A J Sci Comput; 2020; 84(1):13. PubMed ID: 32834471 [TBL] [Abstract][Full Text] [Related]
7. Finite element simulation of articular contact mechanics with quadratic tetrahedral elements. Maas SA; Ellis BJ; Rawlins DS; Weiss JA J Biomech; 2016 Mar; 49(5):659-667. PubMed ID: 26900037 [TBL] [Abstract][Full Text] [Related]
8. A posteriori error approximation in discontinuous Galerkin method on polygonal meshes in elliptic problems. Jaśkowiec J; Pamin J Sci Rep; 2023 Jul; 13(1):10791. PubMed ID: 37402782 [TBL] [Abstract][Full Text] [Related]
9. Methods and framework for visualizing higher-order finite elements. Schroeder WJ; Bertel F; Malaterre M; Thompson D; Pébay PP; O'Bara R; Tendulkar S IEEE Trans Vis Comput Graph; 2006; 12(4):446-60. PubMed ID: 16805255 [TBL] [Abstract][Full Text] [Related]
10. Piece-wise quadratic approximations of arbitrary error functions for fast and robust machine learning. Gorban AN; Mirkes EM; Zinovyev A Neural Netw; 2016 Dec; 84():28-38. PubMed ID: 27639721 [TBL] [Abstract][Full Text] [Related]
11. On a construction of a hierarchy of best linear spline approximations using a finite element approach. Wiley DF; Bertram M; Hamann B IEEE Trans Vis Comput Graph; 2004; 10(5):548-63. PubMed ID: 15794137 [TBL] [Abstract][Full Text] [Related]
12. On the geometric convergence of neural approximations. Lavretsky E IEEE Trans Neural Netw; 2002; 13(2):274-82. PubMed ID: 18244430 [TBL] [Abstract][Full Text] [Related]
13. Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur. Ramos A; Simões JA Med Eng Phys; 2006 Nov; 28(9):916-24. PubMed ID: 16464628 [TBL] [Abstract][Full Text] [Related]
17. An algorithmic approach to convex fair partitions of convex polygons. Campillo M; González-Lima MD; Uribe B MethodsX; 2024 Jun; 12():102530. PubMed ID: 38261943 [TBL] [Abstract][Full Text] [Related]
18. A set of mixed-elements patterns for domain boundary approximation in hexahedral meshes. Lobos C Stud Health Technol Inform; 2013; 184():268-72. PubMed ID: 23400168 [TBL] [Abstract][Full Text] [Related]
19. Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space. Bause M; Radu FA; Köcher U Numer Math (Heidelb); 2017; 137(4):773-818. PubMed ID: 29151621 [TBL] [Abstract][Full Text] [Related]