These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29892256)

  • 61. Expression of a re-centering bias in saccade regulation by superior colliculus neurons.
    Paré M; Munoz DP
    Exp Brain Res; 2001 Apr; 137(3-4):354-68. PubMed ID: 11355382
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Neuronal activity in the rostral superior colliculus related to the initiation of pursuit and saccadic eye movements.
    Krauzlis RJ
    J Neurosci; 2003 May; 23(10):4333-44. PubMed ID: 12764122
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Neuronal Response Gain Enhancement prior to Microsaccades.
    Chen CY; Ignashchenkova A; Thier P; Hafed ZM
    Curr Biol; 2015 Aug; 25(16):2065-74. PubMed ID: 26190072
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Eye position signals in the dorsal pulvinar during fixation and goal-directed saccades.
    Schneider L; Dominguez-Vargas AU; Gibson L; Kagan I; Wilke M
    J Neurophysiol; 2020 Jan; 123(1):367-391. PubMed ID: 31747331
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Microsaccade direction reflects the economic value of potential saccade goals and predicts saccade choice.
    Yu G; Xu B; Zhao Y; Zhang B; Yang M; Kan JY; Milstein DM; Thevarajah D; Dorris MC
    J Neurophysiol; 2016 Feb; 115(2):741-51. PubMed ID: 26609118
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The mechanism of saccade motor pattern generation investigated by a large-scale spiking neuron model of the superior colliculus.
    Morén J; Shibata T; Doya K
    PLoS One; 2013; 8(2):e57134. PubMed ID: 23431402
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy.
    Shakespeare TJ; Kaski D; Yong KX; Paterson RW; Slattery CF; Ryan NS; Schott JM; Crutch SJ
    Brain; 2015 Jul; 138(Pt 7):1976-91. PubMed ID: 25895507
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The impact of microsaccades on vision: towards a unified theory of saccadic function.
    Martinez-Conde S; Otero-Millan J; Macknik SL
    Nat Rev Neurosci; 2013 Feb; 14(2):83-96. PubMed ID: 23329159
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Characteristics of Spontaneous Square-Wave Jerks in the Healthy Macaque Monkey during Visual Fixation.
    Costela FM; Otero-Millan J; McCamy MB; Macknik SL; Di Stasi LL; Rieiro H; Leigh JR; Troncoso XG; Najafian Jazi A; Martinez-Conde S
    PLoS One; 2015; 10(6):e0126485. PubMed ID: 26067994
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Saccade-related activity in monkey superior colliculus. II. Spread of activity during saccades.
    Munoz DP; Wurtz RH
    J Neurophysiol; 1995 Jun; 73(6):2334-48. PubMed ID: 7666142
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Neural circuits for triggering saccades in the brainstem.
    Shinoda Y; Sugiuchi Y; Izawa Y; Takahashi M
    Prog Brain Res; 2008; 171():79-85. PubMed ID: 18718285
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Progression in neuronal processing for saccadic eye movements from parietal cortex area lip to superior colliculus.
    Paré M; Wurtz RH
    J Neurophysiol; 2001 Jun; 85(6):2545-62. PubMed ID: 11387400
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Microsaccades during reading.
    Bowers NR; Poletti M
    PLoS One; 2017; 12(9):e0185180. PubMed ID: 28934359
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ocular myasthenia gravis saccades as a measure of extraocular muscle function.
    Wong SH; Bancroft MJ; Tailor VK; Abbas M; Sekar A; Noble C; Theodorou M; Kaski D
    Front Ophthalmol (Lausanne); 2022; 2():938088. PubMed ID: 38983530
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The superior colliculus and its control of fixation behavior via projections to brainstem omnipause neurons.
    Bergeron A; Guitton D
    Prog Brain Res; 2001; 134():97-107. PubMed ID: 11702566
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Gaze shifts evoked by stimulation of the superior colliculus in the head-free cat conform to the motor map but also depend on stimulus strength and fixation activity.
    Paré M; Crommelinck M; Guitton D
    Exp Brain Res; 1994; 101(1):123-39. PubMed ID: 7843291
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Neurons in the cat pretectum that project to the dorsal lateral geniculate nucleus are activated during saccades.
    Schmidt M
    J Neurophysiol; 1996 Nov; 76(5):2907-18. PubMed ID: 8930243
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A new local feedback model of the saccadic burst generator.
    Scudder CA
    J Neurophysiol; 1988 May; 59(5):1455-75. PubMed ID: 3385469
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The effects of fixation target size and luminance on microsaccades and square-wave jerks.
    McCamy MB; Najafian Jazi A; Otero-Millan J; Macknik SL; Martinez-Conde S
    PeerJ; 2013; 1():e9. PubMed ID: 23638403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.