These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29892744)

  • 21. Al
    Cheng Q; Benipal MK; Liu Q; Wang X; Crozier PA; Chan CK; Nemanich RJ
    ACS Appl Mater Interfaces; 2017 May; 9(19):16138-16147. PubMed ID: 28441470
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characteristics of ZnO films prepared by atomic layer deposition for transparent electronic devices.
    Lee DH; Kim HS; Noh SJ
    J Nanosci Nanotechnol; 2011 May; 11(5):4312-6. PubMed ID: 21780448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Size and Orientation Effects on the Kinetics and Structure of Nickelide Contacts to InGaAs Fin Structures.
    Chen R; Dayeh SA
    Nano Lett; 2015 Jun; 15(6):3770-9. PubMed ID: 25879390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atomic Scale Dynamics of Contact Formation in the Cross-Section of InGaAs Nanowire Channels.
    Chen R; Jungjohann KL; Mook WM; Nogan J; Dayeh SA
    Nano Lett; 2017 Apr; 17(4):2189-2196. PubMed ID: 28334533
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of a Hybrid Nanostructure of ZnO-Decorated MoS
    Oh IK; Kim WH; Zeng L; Singh J; Bae D; Mackus AJM; Song JG; Seo S; Shong B; Kim H; Bent SF
    ACS Nano; 2020 Feb; 14(2):1757-1769. PubMed ID: 31967453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scanning tunneling microscopy/spectroscopy study of atomic and electronic structures of In2O on InAs and In0.53Ga0.47As(001)-(4×2) surfaces.
    Shen J; Chagarov EA; Feldwinn DL; Melitz W; Santagata NM; Kummel AC; Droopad R; Passlack M
    J Chem Phys; 2010 Oct; 133(16):164704. PubMed ID: 21033816
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface modification of a ZnO electron-collecting layer using atomic layer deposition to fabricate high-performing inverted organic photovoltaics.
    Kim KD; Lim DC; Hu J; Kwon JD; Jeong MG; Seo HO; Lee JY; Jang KY; Lim JH; Lee KH; Jeong Y; Kim YD; Cho S
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8718-23. PubMed ID: 23951998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlation between Optical Localization-State and Electrical Deep-Level State in In
    Ahn IH; Kim DY; Lee S
    Nanomaterials (Basel); 2021 Feb; 11(3):. PubMed ID: 33652753
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Initial Processes of Atomic Layer Deposition of Al₂O₃ on InGaAs: Interface Formation Mechanisms and Impact on Metal-Insulator-Semiconductor Device Performance.
    Jevasuwan W; Urabe Y; Maeda T; Miyata N; Yasuda T; Yamada H; Hata M; Taoka N; Takenaka M; Takagi S
    Materials (Basel); 2012 Mar; 5(3):404-414. PubMed ID: 28817054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atomic imaging of atomic layer deposition oxide nucleation with trimethylaluminum on As-rich InGaAs(001) 2 × 4 vs Ga/In-rich InGaAs(001) 4 × 2.
    Melitz W; Kent T; Kummel AC; Droopad R; Holland M; Thayne I
    J Chem Phys; 2012 Apr; 136(15):154706. PubMed ID: 22519342
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flexible and High-Performance Amorphous Indium Zinc Oxide Thin-Film Transistor Using Low-Temperature Atomic Layer Deposition.
    Sheng J; Lee HJ; Oh S; Park JS
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33821-33828. PubMed ID: 27960372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes.
    Klug JA; Weimer MS; Emery JD; Yanguas-Gil A; Seifert S; Schlepütz CM; Martinson AB; Elam JW; Hock AS; Proslier T
    Rev Sci Instrum; 2015 Nov; 86(11):113901. PubMed ID: 26628145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ~3-nm ZnO Nanoislands Deposition and Application in Charge Trapping Memory Grown by Single ALD Step.
    El-Atab N; Chowdhury F; Ulusoy TG; Ghobadi A; Nazirzadeh A; Okyay AK; Nayfeh A
    Sci Rep; 2016 Dec; 6():38712. PubMed ID: 27991492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of residual gas on the optoelectronic properties of Cs-sensitized In
    Fang Q; Shen Y; Zhang S; Yang X; Duan L; Chen L; Xu S; Gao M; Pan H
    J Colloid Interface Sci; 2021 Jul; 594():47-53. PubMed ID: 33756367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulating the interface quality and electrical properties of HfTiO/InGaAs gate stack by atomic-layer-deposition-derived Al₂O₃ passivation layer.
    He G; Gao J; Chen H; Cui J; Sun Z; Chen X
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22013-25. PubMed ID: 25471009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thin film and interface properties during ZnO deposition onto high-barrier hybrid/PET flexible substrates.
    Koidis C; Logothetidis S; Laskarakis A; Tsiaoussis I; Frangis N
    Micron; 2009 Jan; 40(1):130-4. PubMed ID: 18406620
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In-situ synchrotron X-ray scattering study of thin film growth by atomic layer deposition.
    Park YJ; Lee DR; Lee HH; Lee HB; Kim H; Park GC; Rhee SW; Baik S
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1577-80. PubMed ID: 21456240
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Atomic Layer Deposition of Nickel on ZnO Nanowire Arrays for High-Performance Supercapacitors.
    Ren QH; Zhang Y; Lu HL; Wang YP; Liu WJ; Ji XM; Devi A; Jiang AQ; Zhang DW
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):468-476. PubMed ID: 29211442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition.
    Lin YY; Hsu CC; Tseng MH; Shyue JJ; Tsai FY
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22610-7. PubMed ID: 26436832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High mobility In
    Chen C; Holmes SN; Farrer I; Beere HE; Ritchie DA
    J Phys Condens Matter; 2018 Mar; 30(10):105705. PubMed ID: 29451866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.