These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2989285)

  • 1. The effect of chloride on the redox and EPR properties of myeloperoxidase.
    Ikeda-Saito M; Prince RC
    J Biol Chem; 1985 Jul; 260(14):8301-5. PubMed ID: 2989285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic, ligand binding, and enzymatic properties of the spleen green hemeprotein. A comparison with myeloperoxidase.
    Ikeda-Saito M
    J Biol Chem; 1985 Sep; 260(21):11688-96. PubMed ID: 2995345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of myeloperoxidase with ligands as studied by EPR.
    Wever R; Bakkenist AR
    Biochim Biophys Acta; 1980 Mar; 612(1):178-84. PubMed ID: 6244848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral properties of myeloperoxidase and its ligand complexes.
    Wever R; Plat H
    Biochim Biophys Acta; 1981 Oct; 661(2):235-9. PubMed ID: 6271219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman evidence of chloride binding to the heme iron in myeloperoxidase.
    Ikeda-Saito M; Argade PV; Rousseau DL
    FEBS Lett; 1985 May; 184(1):52-5. PubMed ID: 2985447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox thermodynamics of the Fe(III)/Fe(II) couple of human myeloperoxidase in its high-spin and low-spin forms.
    Battistuzzi G; Bellei M; Zederbauer M; Furtmüller PG; Sola M; Obinger C
    Biochemistry; 2006 Oct; 45(42):12750-5. PubMed ID: 17042493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-dependent structural changes in an engineered heme-copper center in myoglobin: insights into chloride binding to CuB in heme copper oxidases.
    Zhao X; Nilges MJ; Lu Y
    Biochemistry; 2005 May; 44(17):6559-64. PubMed ID: 15850389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation-reduction potentials and ionization states of extracellular peroxidases from the lignin-degrading fungus Phanerochaete chrysosporium.
    Millis CD; Cai DY; Stankovich MT; Tien M
    Biochemistry; 1989 Oct; 28(21):8484-9. PubMed ID: 2605198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation procedure and some properties of myeloperoxidase from human leucocytes.
    Bakkenist AR; Wever R; Vulsma T; Plat H; van Gelder BF
    Biochim Biophys Acta; 1978 May; 524(1):45-54. PubMed ID: 207340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A kinetic analysis of the interaction of human myeloperoxidase with hydrogen peroxide, chloride ions, and protons.
    Andrews PC; Krinsky NI
    J Biol Chem; 1982 Nov; 257(22):13240-5. PubMed ID: 6292181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation-reduction potential measurements of cytochrome c peroxidase and pH dependent spectral transitions in the ferrous enzyme.
    Conroy CW; Tyma P; Daum PH; Erman JE
    Biochim Biophys Acta; 1978 Nov; 537(1):62-9. PubMed ID: 31188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite.
    Winterbourn CC
    Biochim Biophys Acta; 1985 Jun; 840(2):204-10. PubMed ID: 2986713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes.
    Ramos CL; Pou S; Britigan BE; Cohen MS; Rosen GM
    J Biol Chem; 1992 Apr; 267(12):8307-12. PubMed ID: 1314821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heme-linked ionizations of myeloperoxidase detected by Raman difference spectroscopy. A comparison with plant and yeast peroxidases.
    Stump RF; Deanin GG; Oliver JM; Shelnutt JA
    Biophys J; 1987 Apr; 51(4):605-10. PubMed ID: 3034344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of the chloride-depleted oxygen-evolving complex of photosystem II studied by electron paramagnetic resonance.
    van Vliet P; Rutherford AW
    Biochemistry; 1996 Feb; 35(6):1829-39. PubMed ID: 8639664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nitrosyl compounds of ferrous animal haloperoxidases.
    Bolscher BG; Wever R
    Biochim Biophys Acta; 1984 Nov; 791(1):75-81. PubMed ID: 6093887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentiometric and electron nuclear double resonance properties of the two spin forms of the [4Fe-4S]+ cluster in the novel ferredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus.
    Park JB; Fan CL; Hoffman BM; Adams MW
    J Biol Chem; 1991 Oct; 266(29):19351-6. PubMed ID: 1655785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation-reduction potential measurements on chloroperoxidase and its complexes.
    Makino R; Chiang R; Hager LP
    Biochemistry; 1976 Oct; 15(21):4748-54. PubMed ID: 9986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR and electron-paramagnetic-resonance studies of a dihaem cytochrome from Pseudomonas stutzeri (ATCC 11607) (cytochrome c peroxidase).
    Villalaín J; Moura I; Liu MC; Payne WJ; LeGall J; Xavier AV; Moura JJ
    Eur J Biochem; 1984 Jun; 141(2):305-12. PubMed ID: 6329754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An EPR study of myeloperoxidase in human granulocytes.
    Wever R; Roos D; Weening RS; Vulsma T; Van Gelder BF
    Biochim Biophys Acta; 1976 Feb; 421(2):328-33. PubMed ID: 175846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.