These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
420 related articles for article (PubMed ID: 29892912)
1. Comparison of different heuristic and decomposition techniques for river stage modeling. Seo Y; Kim S; Singh VP Environ Monit Assess; 2018 Jun; 190(7):392. PubMed ID: 29892912 [TBL] [Abstract][Full Text] [Related]
2. A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States. Olyaie E; Banejad H; Chau KW; Melesse AM Environ Monit Assess; 2015 Apr; 187(4):189. PubMed ID: 25787167 [TBL] [Abstract][Full Text] [Related]
3. Improving one-dimensional pollution dispersion modeling in rivers using ANFIS and ANN-based GA optimized models. Seifi A; Riahi-Madvar H Environ Sci Pollut Res Int; 2019 Jan; 26(1):867-885. PubMed ID: 30415370 [TBL] [Abstract][Full Text] [Related]
4. Modeling daily water temperature for rivers: comparison between adaptive neuro-fuzzy inference systems and artificial neural networks models. Zhu S; Heddam S; Nyarko EK; Hadzima-Nyarko M; Piccolroaz S; Wu S Environ Sci Pollut Res Int; 2019 Jan; 26(1):402-420. PubMed ID: 30406582 [TBL] [Abstract][Full Text] [Related]
5. Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel. Wong YJ; Arumugasamy SK; Chung CH; Selvarajoo A; Sethu V Environ Monit Assess; 2020 Jun; 192(7):439. PubMed ID: 32556670 [TBL] [Abstract][Full Text] [Related]
6. Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction. Subasi A Comput Biol Med; 2007 Feb; 37(2):227-44. PubMed ID: 16480706 [TBL] [Abstract][Full Text] [Related]
7. Two hybrid data-driven models for modeling water-air temperature relationship in rivers. Zhu S; Hadzima-Nyarko M; Gao A; Wang F; Wu J; Wu S Environ Sci Pollut Res Int; 2019 Apr; 26(12):12622-12630. PubMed ID: 30895536 [TBL] [Abstract][Full Text] [Related]
8. Improving the prediction accuracy of river inflow using two data pre-processing techniques coupled with data-driven model. Nazir HM; Hussain I; Faisal M; Elashkar EE; Shoukry AM PeerJ; 2019; 7():e8043. PubMed ID: 31871832 [TBL] [Abstract][Full Text] [Related]
9. Prediction of Attendance Demand in European Football Games: Comparison of ANFIS, Fuzzy Logic, and ANN. Şahin M; Erol R Comput Intell Neurosci; 2018; 2018():5714872. PubMed ID: 30158960 [TBL] [Abstract][Full Text] [Related]
10. Application of artificial neural networks to predict the heavy metal contamination in the Bartin River. Ucun Ozel H; Gemici BT; Gemici E; Ozel HB; Cetin M; Sevik H Environ Sci Pollut Res Int; 2020 Dec; 27(34):42495-42512. PubMed ID: 32705560 [TBL] [Abstract][Full Text] [Related]
11. Adaptive neuro-fuzzy inference system (ANFIS): a new approach to predictive modeling in QSAR applications: a study of neuro-fuzzy modeling of PCP-based NMDA receptor antagonists. Buyukbingol E; Sisman A; Akyildiz M; Alparslan FN; Adejare A Bioorg Med Chem; 2007 Jun; 15(12):4265-82. PubMed ID: 17434739 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of ANN and ANFIS modeling ability in the prediction of AISI 1050 steel machining performance. Sada SO; Ikpeseni SC Heliyon; 2021 Feb; 7(2):e06136. PubMed ID: 33553780 [TBL] [Abstract][Full Text] [Related]
13. Prediction of biochemical oxygen demand at the upstream catchment of a reservoir using adaptive neuro fuzzy inference system. Chiu YC; Chiang CW; Lee TY Water Sci Technol; 2017 Oct; 76(7-8):1739-1753. PubMed ID: 28991790 [TBL] [Abstract][Full Text] [Related]
14. A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition. Zhang X; Zhang Q; Zhang G; Nie Z; Gui Z; Que H Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29883381 [TBL] [Abstract][Full Text] [Related]
15. Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction. Tabbussum R; Dar AQ Environ Sci Pollut Res Int; 2021 May; 28(20):25265-25282. PubMed ID: 33453033 [TBL] [Abstract][Full Text] [Related]
16. Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition. Wang WC; Chau KW; Qiu L; Chen YB Environ Res; 2015 May; 139():46-54. PubMed ID: 25684671 [TBL] [Abstract][Full Text] [Related]
17. Modelling monthly mean air temperature using artificial neural network, adaptive neuro-fuzzy inference system and support vector regression methods: A case of study for Turkey. Yakut E; Süzülmüş S Network; 2020; 31(1-4):1-36. PubMed ID: 32397767 [TBL] [Abstract][Full Text] [Related]
18. Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study. Heddam S Environ Monit Assess; 2014 Jan; 186(1):597-619. PubMed ID: 24057665 [TBL] [Abstract][Full Text] [Related]
19. Comparative assessment of deep belief network and hybrid adaptive neuro-fuzzy inference system model based on a meta-heuristic optimization algorithm for precise predictions of the potential evapotranspiration. Akiner ME; Ghasri M Environ Sci Pollut Res Int; 2024 Jun; 31(30):42719-42749. PubMed ID: 38879646 [TBL] [Abstract][Full Text] [Related]
20. Ensemble adaptive network-based fuzzy inference system with weighted arithmetical mean and application to diagnosis of optic nerve disease from visual-evoked potential signals. Akdemir B; Kara S; Polat K; Güven A; Güneş S Artif Intell Med; 2008 Jun; 43(2):141-9. PubMed ID: 18468871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]