These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29892925)

  • 21. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress.
    Raitt DC; Johnson AL; Erkine AM; Makino K; Morgan B; Gross DS; Johnston LH
    Mol Biol Cell; 2000 Jul; 11(7):2335-47. PubMed ID: 10888672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel insights into the osmotic stress response of yeast.
    Mager WH; Siderius M
    FEMS Yeast Res; 2002 Aug; 2(3):251-7. PubMed ID: 12702273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock.
    Imazu H; Sakurai H
    Eukaryot Cell; 2005 Jun; 4(6):1050-6. PubMed ID: 15947197
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microarray Analysis of Gene Expression in Saccharomyces cerevisiae kap108Δ Mutants upon Addition of Oxidative Stress.
    Belanger KD; Larson N; Kahn J; Tkachev D; Ay A
    G3 (Bethesda); 2016 Apr; 6(4):1131-9. PubMed ID: 26888869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of the Heat Stress Response of Ceramides with Different Fatty-Acyl Chain Lengths in Baker's Yeast.
    Chen PW; Fonseca LL; Hannun YA; Voit EO
    PLoS Comput Biol; 2015 Aug; 11(8):e1004373. PubMed ID: 26241868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stress-tolerance of baker's-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance.
    Shima J; Takagi H
    Biotechnol Appl Biochem; 2009 May; 53(Pt 3):155-64. PubMed ID: 19476439
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gene expression profiles of the thermotolerant yeast Saccharomyces cerevisiae strain KKU-VN8 during high-temperature ethanol fermentation using sweet sorghum juice.
    Techaparin A; Thanonkeo P; Klanrit P
    Biotechnol Lett; 2017 Oct; 39(10):1521-1527. PubMed ID: 28721580
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R; Bruno-Bárcena JM; Matallana E
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes.
    Versele M; Thevelein JM; Van Dijck P
    Yeast; 2004 Jan; 21(1):75-86. PubMed ID: 14745784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of mRNA differential display to investigate gene expression in thermotolerant cells of Saccharomyces cerevisiae.
    Gross C; Watson K
    Yeast; 1998 Mar; 14(5):431-42. PubMed ID: 9559551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time-Course Analysis of Gene Expression During the Saccharomyces cerevisiae Hypoxic Response.
    Bendjilali N; MacLeon S; Kalra G; Willis SD; Hossian AK; Avery E; Wojtowicz O; Hickman MJ
    G3 (Bethesda); 2017 Jan; 7(1):221-231. PubMed ID: 27883312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors.
    Grigull J; Mnaimneh S; Pootoolal J; Robinson MD; Hughes TR
    Mol Cell Biol; 2004 Jun; 24(12):5534-47. PubMed ID: 15169913
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions.
    Varela C; Cárdenas J; Melo F; Agosin E
    Yeast; 2005 Apr; 22(5):369-83. PubMed ID: 15806604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The response of the yeast Saccharomyces cerevisiae to sudden vs. gradual changes in environmental stress monitored by expression of the stress response protein Hsp12p.
    Nisamedtinov I; Lindsey GG; Karreman R; Orumets K; Koplimaa M; Kevvai K; Paalme T
    FEMS Yeast Res; 2008 Sep; 8(6):829-38. PubMed ID: 18625028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identifying gene regulatory modules of heat shock response in yeast.
    Wu WS; Li WH
    BMC Genomics; 2008 Sep; 9():439. PubMed ID: 18811975
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Size doesn't matter in the heat shock response.
    Pincus D
    Curr Genet; 2017 May; 63(2):175-178. PubMed ID: 27502399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide effect of non-optimal temperatures under anaerobic conditions on gene expression in Saccharomyces cerevisiae.
    García-Ríos E; Alonso-Del-Real J; Lip KYF; Pinheiro T; Teixeira J; van Gulik W; Domingues L; Querol A; Guillamón JM
    Genomics; 2022 Jul; 114(4):110386. PubMed ID: 35569731
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Rpd3L HDAC complex is essential for the heat stress response in yeast.
    Ruiz-Roig C; Viéitez C; Posas F; de Nadal E
    Mol Microbiol; 2010 May; 76(4):1049-62. PubMed ID: 20398213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating the underlying mechanism of Saccharomyces cerevisiae in response to ethanol stress employing RNA-seq analysis.
    Li R; Xiong G; Yuan S; Wu Z; Miao Y; Weng P
    World J Microbiol Biotechnol; 2017 Nov; 33(11):206. PubMed ID: 29101531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Upregulation of the Hsp104 chaperone at physiological temperature during recovery from thermal insult.
    Seppä L; Hänninen AL; Makarow M
    Mol Microbiol; 2004 Apr; 52(1):217-25. PubMed ID: 15049822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.