These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29892925)

  • 41. The Rpd3L HDAC complex is essential for the heat stress response in yeast.
    Ruiz-Roig C; Viéitez C; Posas F; de Nadal E
    Mol Microbiol; 2010 May; 76(4):1049-62. PubMed ID: 20398213
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Investigating the underlying mechanism of Saccharomyces cerevisiae in response to ethanol stress employing RNA-seq analysis.
    Li R; Xiong G; Yuan S; Wu Z; Miao Y; Weng P
    World J Microbiol Biotechnol; 2017 Nov; 33(11):206. PubMed ID: 29101531
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Upregulation of the Hsp104 chaperone at physiological temperature during recovery from thermal insult.
    Seppä L; Hänninen AL; Makarow M
    Mol Microbiol; 2004 Apr; 52(1):217-25. PubMed ID: 15049822
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Management of the endoplasmic reticulum stress by activation of the heat shock response in yeast.
    Hou J; Tang H; Liu Z; Österlund T; Nielsen J; Petranovic D
    FEMS Yeast Res; 2014 May; 14(3):481-94. PubMed ID: 24237754
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MAL62 overexpression and NTH1 deletion enhance the freezing tolerance and fermentation capacity of the baker's yeast in lean dough.
    Sun X; Zhang CY; Wu MY; Fan ZH; Liu SN; Zhu WB; Xiao DG
    Microb Cell Fact; 2016 Apr; 15():54. PubMed ID: 27039899
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Distinct Proteome Remodeling of Industrial Saccharomyces cerevisiae in Response to Prolonged Thermal Stress or Transient Heat Shock.
    Xiao W; Duan X; Lin Y; Cao Q; Li S; Guo Y; Gan Y; Qi X; Zhou Y; Guo L; Qin P; Wang Q; Shui W
    J Proteome Res; 2018 May; 17(5):1812-1825. PubMed ID: 29611422
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gene expression analysis of cold and freeze stress in Baker's yeast.
    Rodriguez-Vargas S; Estruch F; Randez-Gil F
    Appl Environ Microbiol; 2002 Jun; 68(6):3024-30. PubMed ID: 12039763
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Depletion of yeast PDK1 orthologs triggers a stress-like transcriptional response.
    Pastor-Flores D; Ferrer-Dalmau J; Bahí A; Boleda M; Biondi RM; Casamayor A
    BMC Genomics; 2015 Sep; 16(1):719. PubMed ID: 26391581
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor.
    Hahn JS; Neef DW; Thiele DJ
    Mol Microbiol; 2006 Apr; 60(1):240-51. PubMed ID: 16556235
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modelling the freezing response of baker's yeast prestressed cells: a statistical approach.
    Kronberg MF; Nikel PI; Cerrutti P; Galvagno MA
    J Appl Microbiol; 2008 Mar; 104(3):716-27. PubMed ID: 17927744
    [TBL] [Abstract][Full Text] [Related]  

  • 51. De novo transcriptome sequencing of Isaria cateniannulata and comparative analysis of gene expression in response to heat and cold stresses.
    Wang D; Li L; Wu G; Vasseur L; Yang G; Huang P
    PLoS One; 2017; 12(10):e0186040. PubMed ID: 29023475
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transcriptomic changes in single yeast cells under various stress conditions.
    Su Y; Xu C; Shea J; DeStephanis D; Su Z
    BMC Genomics; 2023 Feb; 24(1):88. PubMed ID: 36829151
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Global transcriptome analysis of the heat shock response of the deep-sea bacterium Shewanella piezotolerans WP3.
    Jian H; Li S; Feng X; Xiao X
    Mar Genomics; 2016 Dec; 30():81-85. PubMed ID: 27567592
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolutionary engineering and transcriptomic analysis of nickel-resistant Saccharomyces cerevisiae.
    Küçükgöze G; Alkım C; Yılmaz Ü; Kısakesen Hİ; Gündüz S; Akman S; Çakar ZP
    FEMS Yeast Res; 2013 Dec; 13(8):731-46. PubMed ID: 23992612
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of cis and trans regulatory variations on the expression divergence of heat shock response genes between yeast strains.
    Li CM; Tzeng JN; Sung HM
    Gene; 2012 Sep; 506(1):93-7. PubMed ID: 22759523
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Extracting the hidden features in saline osmotic tolerance in Saccharomyces cerevisiae from DNA microarray data using the self-organizing map: biosynthesis of amino acids.
    Pandey G; Yoshikawa K; Hirasawa T; Nagahisa K; Katakura Y; Furusawa C; Shimizu H; Shioya S
    Appl Microbiol Biotechnol; 2007 May; 75(2):415-26. PubMed ID: 17262206
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of a method for heat shock stress assessment in yeast based on transcription of specific genes.
    Meza E; Muñoz-Arellano AJ; Johansson M; Chen X; Petranovic D
    Yeast; 2021 Oct; 38(10):549-565. PubMed ID: 34182606
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast.
    Estruch F
    FEMS Microbiol Rev; 2000 Oct; 24(4):469-86. PubMed ID: 10978547
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains.
    Carreto L; Eiriz MF; Domingues I; Schuller D; Moura GR; Santos MA
    BMC Genomics; 2011 Apr; 12():201. PubMed ID: 21507216
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Extensive post-transcriptional buffering of gene expression in the response to severe oxidative stress in baker's yeast.
    Blevins WR; Tavella T; Moro SG; Blasco-Moreno B; Closa-Mosquera A; Díez J; Carey LB; Albà MM
    Sci Rep; 2019 Jul; 9(1):11005. PubMed ID: 31358845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.