These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29892925)

  • 61. Expression profiling by oligonucleotide microarrays spotted on coated polymer slides.
    Nielsen PS; Ohlsson H; Alsbo C; Andersen MS; Kauppinen S
    J Biotechnol; 2005 Mar; 116(2):125-34. PubMed ID: 15664076
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Heat shock partially dissociates the overlapping modules of the yeast protein-protein interaction network: a systems level model of adaptation.
    Mihalik Á; Csermely P
    PLoS Comput Biol; 2011 Oct; 7(10):e1002187. PubMed ID: 22022244
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes.
    Gibney PA; Lu C; Caudy AA; Hess DC; Botstein D
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):E4393-402. PubMed ID: 24167267
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Studies on the energy metabolism during the respiratory process by baker's yeast.
    Hoogerheide JC
    Radiat Environ Biophys; 1975 Dec; 12(4):281-90. PubMed ID: 1105650
    [TBL] [Abstract][Full Text] [Related]  

  • 65. UV Laser-Induced, Time-Resolved Transcriptome Responses of
    Hauser M; Abraham PE; Barcelona L; Becker JM
    G3 (Bethesda); 2019 Aug; 9(8):2549-2560. PubMed ID: 31213515
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Microarray analysis of p-anisaldehyde-induced transcriptome of Saccharomyces cerevisiae.
    Yu L; Guo N; Yang Y; Wu X; Meng R; Fan J; Ge F; Wang X; Liu J; Deng X
    J Ind Microbiol Biotechnol; 2010 Mar; 37(3):313-22. PubMed ID: 20024600
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The biological effects of high-pressure gas on the yeast transcriptome.
    Matsuoka H; Suzuki Y; Iwahashi H; Arao T; Suzuki Y; Tamura K
    Braz J Med Biol Res; 2005 Aug; 38(8):1267-72. PubMed ID: 16082469
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of power-frequency magnetic fields on genome-scale gene expression in Saccharomyces cerevisiae.
    Nakasono S; Laramee C; Saiki H; McLeod KJ
    Radiat Res; 2003 Jul; 160(1):25-37. PubMed ID: 12816520
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Screening of thermosensitive autolytic mutant brewer's yeast and transcriptomic analysis of heat stress response.
    Zhang M; Wang J; Niu C; Zheng F; Liu C; Li Q
    Can J Microbiol; 2020 Nov; 66(11):631-640. PubMed ID: 32619357
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast.
    Lu C; Brauer MJ; Botstein D
    Mol Biol Cell; 2009 Feb; 20(3):891-903. PubMed ID: 19056679
    [TBL] [Abstract][Full Text] [Related]  

  • 71. An improved, bias-reduced probabilistic functional gene network of baker's yeast, Saccharomyces cerevisiae.
    Lee I; Li Z; Marcotte EM
    PLoS One; 2007 Oct; 2(10):e988. PubMed ID: 17912365
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Quantitative Operating Principles of Yeast Metabolism during Adaptation to Heat Stress.
    Pereira T; Vilaprinyo E; Belli G; Herrero E; Salvado B; Sorribas A; Altés G; Alves R
    Cell Rep; 2018 Feb; 22(9):2421-2430. PubMed ID: 29490277
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Transcriptomic Analysis of Saccharomyces cerevisiae Under the Stress of 2-Phenylethanol.
    Jin D; Gu B; Xiong D; Huang G; Huang X; Liu L; Xiao J
    Curr Microbiol; 2018 Aug; 75(8):1068-1076. PubMed ID: 29666939
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Biochemical systems analysis of genome-wide expression data.
    Voit EO; Radivoyevitch T
    Bioinformatics; 2000 Nov; 16(11):1023-37. PubMed ID: 11159314
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Saccharomyces cerevisiae (Baker's Yeast) as an Interfering RNA Expression and Delivery System.
    Duman-Scheel M
    Curr Drug Targets; 2019; 20(9):942-952. PubMed ID: 30474529
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A Model of Exposure to Extreme Environmental Heat Uncovers the Human Transcriptome to Heat Stress.
    Bouchama A; Aziz MA; Mahri SA; Gabere MN; Dlamy MA; Mohammad S; Abbad MA; Hussein M
    Sci Rep; 2017 Aug; 7(1):9429. PubMed ID: 28842615
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Comparison of RNA isolation methods on RNA-Seq: implications for differential expression and meta-analyses.
    Scholes AN; Lewis JA
    BMC Genomics; 2020 Mar; 21(1):249. PubMed ID: 32197587
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Transcriptome responses to heat stress in hypothalamus of a meat-type chicken.
    Sun H; Jiang R; Xu S; Zhang Z; Xu G; Zheng J; Qu L
    J Anim Sci Biotechnol; 2015; 6(1):6. PubMed ID: 25774290
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Combinatorial effects of environmental parameters on transcriptional regulation in Saccharomyces cerevisiae: a quantitative analysis of a compendium of chemostat-based transcriptome data.
    Knijnenburg TA; Daran JM; van den Broek MA; Daran-Lapujade PA; de Winde JH; Pronk JT; Reinders MJ; Wessels LF
    BMC Genomics; 2009 Jan; 10():53. PubMed ID: 19173729
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Statistical inference methods for sparse biological time series data.
    Ndukum J; Fonseca LL; Santos H; Voit EO; Datta S
    BMC Syst Biol; 2011 Apr; 5():57. PubMed ID: 21518445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.