These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 29893067)
1. Fabrication and Characterization of Chitosan-Hyaluronic Acid Scaffolds with Varying Stiffness for Glioblastoma Cell Culture. Erickson AE; Lan Levengood SK; Sun J; Chang FC; Zhang M Adv Healthc Mater; 2018 Aug; 7(15):e1800295. PubMed ID: 29893067 [TBL] [Abstract][Full Text] [Related]
2. Culture on 3D Chitosan-Hyaluronic Acid Scaffolds Enhances Stem Cell Marker Expression and Drug Resistance in Human Glioblastoma Cancer Stem Cells. Wang K; Kievit FM; Erickson AE; Silber JR; Ellenbogen RG; Zhang M Adv Healthc Mater; 2016 Dec; 5(24):3173-3181. PubMed ID: 27805789 [TBL] [Abstract][Full Text] [Related]
3. Porous chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma microenvironment ECM. Florczyk SJ; Wang K; Jana S; Wood DL; Sytsma SK; Sham J; Kievit FM; Zhang M Biomaterials; 2013 Dec; 34(38):10143-50. PubMed ID: 24075410 [TBL] [Abstract][Full Text] [Related]
4. Bioengineered scaffolds for 3D culture demonstrate extracellular matrix-mediated mechanisms of chemotherapy resistance in glioblastoma. Xiao W; Wang S; Zhang R; Sohrabi A; Yu Q; Liu S; Ehsanipour A; Liang J; Bierman RD; Nathanson DA; Seidlits SK Matrix Biol; 2020 Jan; 85-86():128-146. PubMed ID: 31028838 [TBL] [Abstract][Full Text] [Related]
5. Induction Therapy of Retinoic Acid with a Temozolomide-Loaded Gold Nanoparticle-Associated Ultrasound Effect on Glioblastoma Cancer Stem-Like Colonies. Fadera S; Chen PY; Liu HL; Lee IC ACS Appl Mater Interfaces; 2021 Jul; 13(28):32845-32855. PubMed ID: 34235925 [TBL] [Abstract][Full Text] [Related]
6. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Wang C; Tong X; Yang F Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441 [TBL] [Abstract][Full Text] [Related]
7. Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels. Bruns J; Egan T; Mercier P; Zustiak SP Acta Biomater; 2023 Jun; 163():400-414. PubMed ID: 35659918 [TBL] [Abstract][Full Text] [Related]
8. Proliferation and enrichment of CD133(+) glioblastoma cancer stem cells on 3D chitosan-alginate scaffolds. Kievit FM; Florczyk SJ; Leung MC; Wang K; Wu JD; Silber JR; Ellenbogen RG; Lee JS; Zhang M Biomaterials; 2014 Nov; 35(33):9137-43. PubMed ID: 25109438 [TBL] [Abstract][Full Text] [Related]
9. Biomimetic brain tumor niche regulates glioblastoma cells towards a cancer stem cell phenotype. Liu YC; Lee IC; Chen PY J Neurooncol; 2018 May; 137(3):511-522. PubMed ID: 29357090 [TBL] [Abstract][Full Text] [Related]
10. Pre-Clinical Drug Testing in 2D and 3D Human In Vitro Models of Glioblastoma Incorporating Non-Neoplastic Astrocytes: Tunneling Nano Tubules and Mitochondrial Transfer Modulates Cell Behavior and Therapeutic Respons. Civita P; M Leite D; Pilkington GJ Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31795330 [TBL] [Abstract][Full Text] [Related]
11. Protocol for in vitro evaluation of effects of stiffness on patient-derived glioblastoma. Sohrabi A; Seidlits SK STAR Protoc; 2024 Sep; 5(3):103266. PubMed ID: 39146187 [TBL] [Abstract][Full Text] [Related]
12. Novel nanohydrogel of hyaluronic acid loaded with quercetin alone and in combination with temozolomide as new therapeutic tool, CD44 targeted based, of glioblastoma multiforme. Barbarisi M; Iaffaioli RV; Armenia E; Schiavo L; De Sena G; Tafuto S; Barbarisi A; Quagliariello V J Cell Physiol; 2018 Oct; 233(10):6550-6564. PubMed ID: 29030990 [TBL] [Abstract][Full Text] [Related]
13. A novel 3D in vitro model of glioblastoma reveals resistance to temozolomide which was potentiated by hypoxia. Musah-Eroje A; Watson S J Neurooncol; 2019 Apr; 142(2):231-240. PubMed ID: 30694423 [TBL] [Abstract][Full Text] [Related]
14. Bioengineered Scaffolds for 3D Analysis of Glioblastoma Proliferation and Invasion. Heffernan JM; Overstreet DJ; Le LD; Vernon BL; Sirianni RW Ann Biomed Eng; 2015 Aug; 43(8):1965-77. PubMed ID: 25515315 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of 3D calcium-alginate scaffolds for human glioblastoma modeling and anticancer drug response evaluation. Chaicharoenaudomrung N; Kunhorm P; Promjantuek W; Heebkaew N; Rujanapun N; Noisa P J Cell Physiol; 2019 Nov; 234(11):20085-20097. PubMed ID: 30945284 [TBL] [Abstract][Full Text] [Related]
16. Gradient hydrogels for screening stiffness effects on patient-derived glioblastoma xenograft cellfates in 3D. Zhu D; Trinh P; Li J; Grant GA; Yang F J Biomed Mater Res A; 2021 Jun; 109(6):1027-1035. PubMed ID: 32862485 [TBL] [Abstract][Full Text] [Related]
17. A human co-culture cell model incorporating microglia supports glioblastoma growth and migration, and confers resistance to cytotoxics. Leite DM; Zvar Baskovic B; Civita P; Neto C; Gumbleton M; Pilkington GJ FASEB J; 2020 Jan; 34(1):1710-1727. PubMed ID: 31914660 [TBL] [Abstract][Full Text] [Related]
19. Nano-pearl powder/chitosan-hyaluronic acid porous composite scaffold and preliminary study of its osteogenesis mechanism. Li X; Xu P; Cheng Y; Zhang W; Zheng B; Wang Q Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110749. PubMed ID: 32279810 [TBL] [Abstract][Full Text] [Related]
20. Modeling the tumor microenvironment using chitosan-alginate scaffolds to control the stem-like state of glioblastoma cells. Kievit FM; Wang K; Erickson AE; Lan Levengood SK; Ellenbogen RG; Zhang M Biomater Sci; 2016 Apr; 4(4):610-3. PubMed ID: 26688867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]