These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29893725)

  • 1. How to make a large nutrient removal plant energy self-sufficient. Latest upgrade of the Vienna Main Wastewater Treatment Plant (VMWWTP).
    Kroiss H; Klager F
    Water Sci Technol; 2018 Jun; 77(9-10):2369-2376. PubMed ID: 29893725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient removal process development and full scale implementation at the 4 million p.e. main treatment plant of Vienna, Austria.
    Kroiss H; Klager F; Winkler S; Wandl G; Svardal K
    Water Sci Technol; 2004; 50(7):19-26. PubMed ID: 15553454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of sewage sludge thickening and energy self-sufficiency with advanced process control tools in a full-scale wastewater treatment plant.
    Romero-Güiza MS; Flotats X; Asiain-Mira R; Palatsi J
    Water Res; 2022 Aug; 222():118924. PubMed ID: 35933817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing cost and process performance of activated sludge (AS) and biological aerated filters (BAF) over ten years of full sale operation.
    Hansen R; Thogersen T; Rogalla F
    Water Sci Technol; 2007; 55(8-9):99-106. PubMed ID: 17546975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants.
    De Vrieze J; Smet D; Klok J; Colsen J; Angenent LT; Vlaeminck SE
    Bioresour Technol; 2016 Oct; 218():1237-45. PubMed ID: 27423372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cost minimization in a full-scale conventional wastewater treatment plant: associated costs of biological energy consumption versus sludge production.
    Sid S; Volant A; Lesage G; Heran M
    Water Sci Technol; 2017 Nov; 76(9-10):2473-2481. PubMed ID: 29144305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potentials and limits of anaerobic digestion of sewage sludge: energy self-sufficient municipal wastewater treatment plant?
    Jenicek P; Bartacek J; Kutil J; Zabranska J; Dohanyos M
    Water Sci Technol; 2012; 66(6):1277-81. PubMed ID: 22828306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The main wastewater treatment plant of Vienna: an example of cost effective wastewater treatment for large cities.
    Wandl G; Kroiss H; Svardal K
    Water Sci Technol; 2006; 54(10):79-86. PubMed ID: 17165450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simulation study of the energy-efficient options for upgrading and retrofitting a medium-size municipal wastewater treatment plant.
    Mucha Z; Mikosz J
    Environ Technol; 2016 Oct; 37(19):2516-23. PubMed ID: 26878434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of sludge management strategies in wastewater treatment systems using a plant-wide approach.
    Flores-Alsina X; Ramin E; Ikumi D; Harding T; Batstone D; Brouckaert C; Sotemann S; Gernaey KV
    Water Res; 2021 Feb; 190():116714. PubMed ID: 33307375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling energy costs for different operational strategies of a large water resource recovery facility.
    Póvoa P; Oehmen A; Inocêncio P; Matos JS; Frazão A
    Water Sci Technol; 2017 May; 75(9-10):2139-2148. PubMed ID: 28498126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Municipal sludge characteristic changes under different aerating condition in a deep-shaft aeration system.
    Xiong J; Wang XC; Shu W; He T; Liu Y
    Water Sci Technol; 2016; 73(7):1493-9. PubMed ID: 27054720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a generalized predictive controller for a biological wastewater treatment plant.
    Sadeghassadi M; Macnab CJ; Westwick D
    Water Sci Technol; 2016; 73(8):1986-2006. PubMed ID: 27120654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling energy consumption in membrane bioreactors for wastewater treatment in north Africa.
    Skouterisl G; Arnot TC; Jraou M; Feki F; Sayadi S
    Water Environ Res; 2014 Mar; 86(3):232-44. PubMed ID: 24734471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A strategy in wastewater treatment process for significant reduction of excess sludge production.
    Shiota N; Akashi A; Hasegawa S
    Water Sci Technol; 2002; 45(12):127-34. PubMed ID: 12201093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examples of energy self-sufficient municipal nutrient removal plants.
    Nowak O; Keil S; Fimml C
    Water Sci Technol; 2011; 64(1):1-6. PubMed ID: 22053450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NOB suppression in pilot-scale mainstream nitritation-denitritation system coupled with MBR for municipal wastewater treatment.
    Wang H; Xu G; Qiu Z; Zhou Y; Liu Y
    Chemosphere; 2019 Feb; 216():633-639. PubMed ID: 30391884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upgrading of wastewater treatment plants for nutrient removal under optimal use of existing structures.
    Winkler S; Gasser M; Schättle W; Kremmel D; Kletzmayr P; Matsché N
    Water Sci Technol; 2008; 57(9):1437-43. PubMed ID: 18496010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial distribution of pharmaceuticals in conventional wastewater treatment plant with Sludge Treatment Reed Beds technology.
    Kołecka K; Gajewska M; Stepnowski P; Caban M
    Sci Total Environ; 2019 Jan; 647():149-157. PubMed ID: 30077845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.